什么是相伴概率啊
相伴概率是通过SPSS自动计算F统计量,并依据F分布表给出的P值。用来与给定的显著性水平作比较,判定是否应拒绝原假设。
在固定效应模式中,如果FA的相伴概率P值小于或等于给定的显著性水平,则应拒绝原假设,认为控制变量A不同水平下观测变量各总体均值有显著差异,控制变量A的各个效应不同时为0,控制变量A的不同水平对观测变量产生了显著影响。
相反,如果FA的相伴概率P值大于给定的显著性水平,则不应拒绝原假设,认为控制变量A不同水平下观测变量各总体均值无显著差异,控制变量A的各个效应同时为0,控制变量A的不同水平对观测变量没有产生显著影响。
扩展资料
对控制变量B和A、B交互作用的推断同理。在随机模型中,应首先对A、B的交互作用是否显著进行推断,然后再分别依次对A、B的效应进行检验 。
推断控制变量以及控制变量的交互作用是否给观测变量带来了显著影响。容易理解,在观测变量总离差平方和中,如果SSA所占比例较大,则说明控制变量A是引起观测变量变动的主要因素之一,观测变量的变动可以部分地由控制变量A来解释。
相伴概率
1、相伴概率是通过SPSS自动计算F统计量,并依据F分布表给出的P值。用来与给定的显著性水平作比较,判定是否应拒绝原假设。
2、在固定效应模式中,如果FA的相伴概率P值小于或等于给定的显著性水平,则应拒绝原假设,认为控制变量A不同水平下观测变量各总体均值有显著差异,控制变量A的各个效应不同时为0,控制变量A的不同水平对观测变量产生了显著影响。
3、相反,如果FA的相伴概率P值大于给定的显著性水平,则不应拒绝原假设,认为控制变量A不同水平下观测变量各总体均值无显著差异,控制变量A的各个效应同时为0,控制变量A的不同水平对观测变量没有产生显著影响。