量子力

时间:2024-11-28 09:32:12编辑:揭秘君

量子力学难吗

量子力学不难。首先要知道一个概念。量子力学在当今大多数的情景下是工具和思考模式,而非前沿。不同于上世纪二十年代的草创阶段,量子力学已经相对成熟(这并不意味着着对于量子力学人类知晓一切,只是说作为工具和思考模式已经相对可以成型)。本科阶段的量子力学基本是从1900年普朗克量子论到海森堡、薛定谔大抵为止,以二战前的知识架构为主,主要目的是强化学生的量子论观点。所以本科阶段的量子力学确实并不难,至少难度低于许多量子力学直接专项服务的领域。量子力学的趣味性体现在其方法论,我对量子论最初的了解是初三中考后偶然搜到的一篇介绍BCS理论的论文,当时看到库珀对概念时简直拍案叫绝。有了这一层兴趣,再去看量子力学,其实充满各种脑洞和骚操作。比如大家高三时接触的德布罗意波,比如低温物理中的阿布里科索夫漩涡等等,都是绝妙的概念,更加不用说高能物理大佬们的工作了。有这一层意识,很大程度上,量子力学比很多学科要学的舒服很多。关键是你物理活性有多高,脑洞能有多大。 量子力学三大定律为:量子力学第一定律超光速,量子力学第二定律宇宙无引力,量子力学第三定律宇宙神学。量子力学导致三个发现,分立性、不确定性、与物理量的关联性。时钟测量的时间是量子化的,只能取特定值,时间是分立的,而非连续的。量子力学最大特点是分立性,量子即基本微粒。在引力场中最小的时间是10的负44秒。物质无限可分性:一个物体可以看成点,如果它的空间尺度相比我们考虑的运动范围来说可以忽略,而如果不可忽略,它总是分为更多更小的点来处理。质量固有性和质量守恒定律:物体都具有惯性质量,如果它可以视为点,则称为质点,只要物体始终可以视为质点,质量在整个运动过程中保持不变,即质量为守恒量 。物质可区分性:结合可分性,我们用 下标来标识这些不同的质点。时空的连续性、可度量性、绝对性和对称性:时空无限可分,连续,无限延展。时空可以当成欧式空间来处理,其上可以定义距离,进一步可以定义微分、可积分结构。质点在任何时刻具有绝对的,完全确定的速度和位置,即质点在某一时刻状态可以用三个量来准确描述整个时空的所包含的一切粒子世界线就是 时间具有平移对称性,空间具有平移、反演对称性和转动对称性。

什么是量子力学?

量子力学是物理学中有关微观事物的一个分支。 量子力学是物理学的一个分支,它描述了粒子的行为——原子、电子、光子以及几乎所有分子和亚分子领域的东西。 量子力学发展于20世纪上半叶,其结果常常是极其奇怪和违反直觉的。 量子力学与经典物理有何不同? 在原子和电子的尺度上,许多描述物体在日常大小和速度下的运动和相互作用的经典力学方程就不再有用了。 在经典力学中,物体存在于特定的时间特定的地点。在量子力学中,物体存在于概率的迷雾中; 它们有一定的机会到达a点,也有一定的机会到达B点,以此类推。 量子力学是什么时候发展起来的? 量子力学发展了几十年,最初是一组对实验的有争议的数学解释,而经典力学的数学无法解释这些解释。它始于20世纪初,大约在同一时间,阿尔伯特·爱因斯坦发表了他的相对论,这是物理学中描述物体高速运动的另一场革命。然而,与相对论不同的是,量子力学的起源不能归于某一个科学家。相反,在19世纪末到1930年之间,多位科学家为一个逐渐被接受并得到实验验证的基本原理做出了贡献。 1900年,德国物理学家马克斯·普朗克试图解释为什么在特定温度下的物体,比如1470华氏度(800摄氏度)灯泡的灯丝会发出特定的颜色——在这种情况下,会发出红色。普朗克意识到,物理学家路德维希·玻尔兹曼用来描述气体行为的方程,可以转化为对温度和颜色之间关系的解释。问题在于玻尔兹曼的工作依赖于这样一个事实: 任何给定的气体都是由微小的粒子组成的,这意味着光也是由离散的比特组成的。 这一想法与当时有关光的观点大相径庭,当时大多数物理学家认为光是一种连续的波,而不是一个微小的包。普朗克本人既不相信原子,也不相信光的离散位元,但他的概念在1905年得到了推动,当时爱因斯坦发表了一篇论文,题为《关于光的发射和转换的启发式观点》。 爱因斯坦认为光的传播不是波,而是某种形式的“能量量子”。爱因斯坦在他的论文中提出,这个能量包“只能作为一个整体被吸收或产生”,特别是当一个原子在量子化振动速率之间“跳跃”时。这就是量子力学中“量子”部分的由来。 用这种新的方式来设想光,爱因斯坦在他的论文中提出了对九种现象行为的见解,包括普朗克描述的灯泡灯丝发出的特定颜色。它还解释了某些颜色的光是如何将电子从金属表面喷射出来的——这种现象被称为光电效应。 什么是波粒二象性? 在量子力学中,粒子有时以波的形式存在,有时以粒子的形式存在。这在双缝实验中最为著名,在这个实验中,像电子这样的粒子被射向有两条缝的板子,板子后面有一个屏幕,当电子击中屏幕时,屏幕就会亮起来。如果电子是粒子,它们会在穿过一条或另一条狭缝后撞击屏幕的地方产生两条明亮的线。 相反,当实验进行时,屏幕上会形成干涉图样。这种暗带和亮带的模式只有当电子是带有波峰(最高点)和波谷(最低点)的波时才有意义,而波峰和波谷会相互干扰。甚至当一个电子一次被射入狭缝时,干涉图样也会显现出来——这是一种类似于单个电子干涉自身的效应。 1924年,法国物理学家路易斯·德布罗意利用爱因斯坦狭义相对论的方程证明了粒子可以表现出波状特征,而波也可以表现出粒子状特征——这一发现使他在几年后获得了诺贝尔奖。 量子力学如何描述原子? 在20世纪10年代,丹麦物理学家尼尔斯·玻尔试图用量子力学描述原子的内部结构。那时,人们已经知道原子是由一个重、密、带正电的原子核和一群微小、轻、带负电的电子组成的。玻尔把电子放到围绕原子核的轨道上,就像亚原子太阳系中的行星一样,只不过它们只能有特定的预定轨道距离。通过从一个轨道跳到另一个轨道,原子可以接收或发射特定能量的辐射,这反映了它们的量子本质。 不久之后,两名科学家独立工作,使用各自的数学思路,创造了一个更完整的原子量子图。在德国,物理学家维尔纳·海森堡通过发展“矩阵力学”实现了这一点。奥地利-爱尔兰裔物理学家Erwin Schrödinger提出了一个类似的理论,称为“波动力学”。Schrödinger在1926年证明了这两种方法是等价的。 在Heisenberg-Schrödinger的原子模型中,每个电子都扮演着围绕原子核的波的角色,取代了早期的玻尔模型。在Heisenberg-Schrödinger原子模型中,电子服从“波函数”,占据“轨道”而不是轨道。与波尔模型的圆形轨道不同,原子轨道有各种形状,从球形到哑铃到雏菊。 SchrÖdinger的猫悖论是什么? SchrÖdinger的猫悖论是一个经常被误解的思想实验,描述了量子力学的一些早期开发者对其结果的疑虑。玻尔和他的许多学生相信,量子力学表明,粒子在被观察到之前没有明确定义的性质,Schrödinger和爱因斯坦不相信这种可能性,因为它会导致关于现实本质的荒谬结论。1935年,Schrödinger提出了一个实验,在这个实验中,猫的生死取决于一个量子粒子的随机翻转,而这个量子粒子的状态直到盒子被打开才会被发现。Schrödinger希望通过一个依赖于量子粒子的概率性质的真实例子来证明玻尔思想的荒谬性,但却得到了一个荒谬的结果。 根据玻尔对量子力学的解释,在盒子被打开之前,猫处于一种不可能的双重状态,即同时活着和死去。(还没有真正的猫做过这个实验。) Schrödinger和爱因斯坦都认为,这有助于表明量子力学是一个不完整的理论,最终将被符合普通经验的理论所取代。 Schrödinger和爱因斯坦帮助强调了量子力学的另一个奇怪结果,这两个人都无法完全理解。1935年,爱因斯坦与物理学家鲍里斯·波多尔斯基和内森·罗森证明,可以建立两个量子粒子,使它们的量子态始终相互关联。粒子本质上总是“知道”彼此的性质。这意味着,测量一个粒子的状态,就会立即告诉你它的孪生粒子的状态,无论它们相隔多远。这个结果被爱因斯坦称为“远距离的幽灵作用”,但Schrödinger很快将其命名为“纠缠”。 纠缠已被证明是量子力学最重要的方面之一,并在现实世界中一直存在。研究人员经常使用量子纠缠进行实验,这种现象是新兴的量子计算领域的基础的一部分。 量子力学和广义相对论不相容吗? 目前,物理学家对宇宙中所有观测到的粒子和力缺乏一个完整的解释,这通常被称为万有理论。爱因斯坦的相对论描述的是大而有质量的东西,而量子力学描述的是小而无形的东西。这两种理论并非完全不相容,但没有人知道如何把它们结合起来。 许多研究人员都在寻找一种量子引力理论,它将引力引入量子力学,并解释从亚原子到超星系领域的一切。有很多关于如何做到这一点的建议,比如发明一种假想的重力量子粒子——引力子,但到目前为止,还没有一种理论能够满足我们宇宙中所有物体的观测。另一个流行的理论是弦理论,它假设最基本的实体是在许多维度上振动的微小弦,但由于几乎没有发现支持它的证据,物理学家开始不那么广泛地接受它。其他研究人员也在研究涉及环圈量子引力的理论,在环圈量子引力理论中,时间和空间都是离散的、微小的块,但到目前为止,还没有一个想法能在物理学界获得主流。

量子力学最难公式

量子力学公式是有:m1v1+m2v2=m1v1'+m2v2'。如果一个系统不受外力或所受外力的矢量和为零,那么这个系统的总动量保持不变,这个结论叫做动量守恒定律。动量守恒定律是自然界中最重要最普遍的守恒定律之一,既适用于宏观物体,也适用于微观粒子;既适用于低速运动物体,也适用于高速运动物体。角动量:动量是物体运动的“剧烈程度”,即质量乘以速度。旋转物体对应的动量叫做角动量,计算方法是用动量乘以物体到旋转中心的距离。经典物理学:1900年以前占支配地位的物理理论,牛顿运动定律是经典理论的典型代表。共轭变量:海森堡不确定性原理将量子粒子的几对性质联系在了一起。其中最有名的共轭变量包括位置和动量、能量和时间。对一个变量测得越准,对另一个变量就越测不准。矩阵:等边排列的一组数字。矩阵通常排列成矩形,但它可以有任意条边。矩阵一般用来同时计算多个方程。非相对论方程:不把相对论考虑在内的方程。牛顿第二定律(力=质量*加速度)就是一个非相对论方程。对于运动速度远小于光速的物体来说,这种方程是正确的,但随着速度的增加,相对论的效应越来越显著。

上一篇:孟母三迁

下一篇:没有了