平稳随机过程

时间:2024-11-13 06:28:56编辑:揭秘君

平稳过程的简介

统计特性不随时间的推移而变化的随机过程。例如,一台稳定工作的纺纱机纺出的纱的直径大小,受各种随机因素影响,在某一标准值周围波动,在任意若干时刻处,直径之间的统计依赖关系,仅与这些时刻之间的相对位置有关,而与其绝对位置无关,因而直径的变化过程可以看作一个平稳过程。具有近似于这种性质的随机过程,在实际中是大量存在的。在数学中,平稳过程(Stationary random process)或者严格平稳过程(Strictly-sense stationary,SSS)是在固定时间和位置的概率分布与所有时间和位置的概率分布相同的随机过程。这样,数学期望和方差这些参数也不随时间和位置变化。例如,白噪声(AWGN)就是平稳过程,铙钹的敲击声是非平稳的。尽管铙钹的敲击声基本上是白噪声,但是这个噪声随着时间变化:在敲击前是安静的,在敲击后声音逐渐减弱。在时间序列分析中稳态作为一个工具使用,在这里原始数据经常转换为平稳态,例如经济学数据经常随着季节或者价格水平变化。如果这些过程是平稳过程与一个或者多个呈现一定趋势的过程的线性组合,那么这些过程就可以表述为趋势平稳。将这些数据进行转换保留平稳数据用于分析的过程称为解趋势(de-trending)。采样空间也是离散的离散时间平稳过程称为Bernoulli scheme,离散采样空间中每个随机变量可能取得 N'个可能值中的任意一个。当 N = 2 的时候,这个过程叫做伯努利过程。

平稳过程的概念

1)定义设{X(t),t∈T}是一随机过程,如果对于任意的n≧1和任意的t1,t2....,tn∈T以及使t1+τ,t2+τ,...,tn+τ∈T的任意实数τ,n维随机变量(X(t1),X(t2),...,X(tn))和(X(t1+τ),X(t2+τ),...,X(tn+τ))有相同的联合分布函数,即F(t1,t2,...,tn;x1,x2,...xn)=F(t1+τ,t2+τ,...,tn+τ;x1,x2,...,xn)ti∈T,τ∈R,i=1,2,...,n则称{X(t),t∈T}是严(强,狭义)平稳过程,或称{X(t),t∈T}具有严平稳性。2)主要性质和结论⑴严平稳过程的所有一维分布函数F(t;x)=F(x)与t无关;二维分布函数仅是时间间隔的函数,而与两个时刻本身取值无关,即F(t1,t2;x1,x2)=F(t1+τ,t2+τ;x1,x2)=F(0,t2-t1;x1,x2)⑵若{X(t),t∈T}是正态过程,则{X(t),t∈T}是严平稳过程的充要条件是{X(t),t∈T}位宽平稳过程。

上一篇:2011年斯诺克世锦赛

下一篇:没有了