求弗洛伊德算法的详细解释~
floyd算法思想:1,构建一个邻接矩阵存储任意两点之间的权值如图D0.2、例如求v1,v4之间的最短路径。先增加v2做中间顶点,D[1][4]=∞。if(D[1][4]>D[1][2]+D[2]4])=6+4)D[1][4]=10;这样就可以了。3、如不能在离得较远的两点(例v1,v9)直接得到上述可以满足if的中间点,则跟据你书本的代码可以先构建原点到中间点的最短路径,继而就可以求得vi,v9之间的最短路径
弗洛伊德算法介绍
1、Floyd算法又称为插点法,是一种利用动态规划的思想寻找给定的加权图中多源点之间最短路径的算法,与Dijkstra算法类似。该算法名称以创始人之一、1978年图灵奖获得者、斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名。
2、在计算机科学中,Floyd-Warshall算法是一种在具有正或负边缘权重(但没有负周期)的加权图中找到最短路径的算法。算法的单个执行将找到所有顶点对之间的最短路径的长度(加权)。虽然它不返回路径本身的细节,但是可以通过对算法的简单修改来重建路径。该算法的版本也可用于查找关系R的传递闭包,或(与Schulze投票系统相关)在加权图中所有顶点对之间的最宽路径。
弗洛伊德算法求出最短距离
弗洛伊德最短距离算法(Floyd Shortest Path Algorithm)又称为插点法,是一种利用动态规划的思想寻找给定的加权图中多源点之间最短路径的算法。该算法名称以创始人之一、1978年图灵奖获得者、斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名。简介:最短路问题是网络最优化中一个基本而又非常重要的问题,这一问题相对比较简单,在实际生产和生活中经常遇到,许多的网络最优化问题可以化为最短路问题,或者用最短路算法作为其子程序。因此,最短路的用途已远远超出其表面意义迄今为止,所有最短路算法都只对不含负回路的网络有效,实际上对含有负回路的网络,其最短路问题是NP困难的,因此本研究所讨论的网络也不含负回路。此外,如果将无向图每条边用两条端点相同、方向相反的弧来代替,可以将其化为有向图,因而不讨论无向图。Floyd算法是一种用于寻找给定加权图中顶点间最短路径的算法,以1978年图灵奖获得者斯坦福大学计算机科学系教授RobertW.Floyd命名。Floyd算法采用动态规划的原理计算两两顶点间最短路径,主要解决网络路由寻找最优路径的问题。