2022中考数学知识点归纳
数学来源于生活,生活当中有许多事情离不开数学,因此我们要挖掘让孩子感到亲切的生活中的数学材料,2022 中考数学知识点归纳有哪些你知道吗? 一起来看看2022中考数学知识点归纳,欢迎查阅! 中考数学知识点归纳 知识点1:一元二次方程的基本概念 1、一元二次方程3x2+5x-2=0的常数项是-2。 2、一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2。 3、一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7。 4、把方程3x(x-1)-2=-4x化为一般式为3x2-x-2=0。 知识点2:直角坐标系与点的位置 1、直角坐标系中,点A(3,0)在y轴上。 2、直角坐标系中,x轴上的任意点的横坐标为0。 3、直角坐标系中,点A(1,1)在第一象限。 4、直角坐标系中,点A(-2,3)在第四象限。 5、直角坐标系中,点A(-2,1)在第二象限。 知识点3:已知自变量的值求函数值 1、当x=2时,函数y=的值为1。 2、当x=3时,函数y=的值为1。 3、当x=-1时,函数y=的值为1。 知识点4:基本函数的概念及性质 1、函数y=-8x是一次函数。 2、函数y=4x+1是正比例函数。 3、函数是反比例函数。 4、抛物线y=-3(x-2)2-5的开口向下。 5、抛物线y=4(x-3)2-10的对称轴是x=3。 6、抛物线的顶点坐标是(1,2)。 7、反比例函数的图象在第一、三象限。 知识点5:数据的平均数中位数与众数 1、数据13,10,12,8,7的平均数是10。 2、数据3,4,2,4,4的众数是4。 3、数据1,2,3,4,5的中位数是3。 知识点6:特殊三角函数值 1、cos30°=。 2、sin260°+cos260°=1。 3、2sin30°+tan45°=2。 4、tan45°=1。 5、cos60°+sin30°=1。 知识点7:圆的基本性质 1、半圆或直径所对的圆周角是直角。 2、任意一个三角形一定有一个外接圆。 3、在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。 4、在同圆或等圆中,相等的圆心角所对的弧相等。 5、同弧所对的圆周角等于圆心角的一半。 6、同圆或等圆的半径相等。 7、过三个点一定可以作一个圆。 8、长度相等的两条弧是等弧。 9、在同圆或等圆中,相等的圆心角所对的弧相等。 10、经过圆心平分弦的直径垂直于弦。 知识点8:直线与圆的位置关系 1、直线与圆有唯一公共点时,叫做直线与圆相切。 2、三角形的外接圆的圆心叫做三角形的外心。 3。弦切角等于所夹的弧所对的圆心角。 4、三角形的内切圆的圆心叫做三角形的内心。 5、垂直于半径的直线必为圆的切线。 6、过半径的外端点并且垂直于半径的直线是圆的切线。 7、垂直于半径的直线是圆的切线。 8、圆的切线垂直于过切点的半径。 初三数学中考知识点 (1)必然事件是指一定能发生的事件,或者说发生的可能性是100%; (2)不可能事件是指一定不能发生的事件; (3)随机事件是指在一定条件下,可能发生也可能不发生的事件; (4)随机事件的可能性 一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同。 (5)概率 一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数P附近,那么这个常数P就叫做事件A的概率,记为P(A)=P. (6)可能性与概率的关系 事件发生的可能性越大,它的概率越接近于1,反之事件发生的可能性越小,则它的概率越接近0. 中考数学 复习 方法 1.回归课本,基础知识掌握牢固 结合考纲考点,采取对账的方式,做到点点过关,单元过关。对每一单元的常用公式,定义,要熟练,做到张口就来。对于每个章节的主要解题方法和主要题型等,要做到心中有数。 2.适当练题 要多做习题,目的是要从习题中掌握学习的技术和窍门,不同的题有不同的方法,用不同的技巧,尤其是函数中的动点题是现在出题的 热点 ,要多做,但不要做太难的题,以会为主。 同时,不要过于在意刷题的数量,要做到每做一道题,就能搞明白这道题背后运用的公式定理、同类型题目的做题思路,学会举一反三,不仅能提高复习效率,还能更好掌握知识点。 3.掌握重难点 初中数学的学习重点是函数(包括一次函数,正比例函数,反比例函数,二次函数),重点是意义和性质;三角形(包括基本性质,相似,全等,旋转,平移,对称等);四边形(包括平行四边形,梯形,棱形,长方形,正方形,多边形)的性质,定义,面积。 在一轮的专题复习中,一定要注意以上重点,形成自己的知识网,同时梳理各个知识点之间的连接,这样才能轻松应对最后的压轴题。 4.错题重做 冲刺阶段里,要重拾做错的题,特别是大型考试中出错的题,通过回归教材,分析出错的原因,从出错的根源上解决问题。错题重做是查漏补缺的很好途径,这样做可以花较少的时间,解决较多的`问题。 5.考试时需要掌握一些技巧。 当试卷发下来后,应先大致看一下题量,分配好时间,解题时若一道题用时太多还未找到思路,可暂时放过去,将会做的做完,回头再仔细考虑。对于有若干问的解答题,在解答后面的问题时可以利用前面问题的结论,即使前面的问题没有解答出来,只要说清这个条件的出处,也是可以运用的。另外,考试时要冷静,如遇到不会的题目,不妨用一用自我安慰的心理,可以使心情平静,从而发挥出自己的最好水平,当然,安慰归安慰,对于那些一下子做不出的题目,还是要努力思考,尽量能做出多少就做多少,一定的步骤也是有分的。 2022中考数学知识点归纳相关 文章 : ★ 2022中考数学备考四大方法 ★ 2022中考快速提分方法 ★ 2022最新数学期末复习计划范文5篇 ★ 2022年秋九年级数学教学计划 ★ 2022期中考试学习总结十篇 ★ 2022期中考试学习总结最新版十篇 ★ 2022初中数学教学工作计划模板 ★ 2016年中考历史知识点总结 ★ 数学教学工作总结2022精选10篇
2022中考数学知识点梳理
中考是初中教学的指挥棒,它决定着我们初中教学的方向,中考题中有半数以上的题目在课本上能找到原型。原来课本就是本源,是基础。2022中考数学知识点梳理有哪些你知道吗?一起来看看2022中考数学知识点梳理,欢迎查阅! 2022中考数学知识点梳理 锐角三角函数定义 锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。 正弦(sin)等于对边比斜边;sinA=a/c 余弦(cos)等于邻边比斜边;cosA=b/c 正切(tan)等于对边比邻边;tanA=a/b 余切(cot)等于邻边比对边;cotA=b/a 正割(sec)等于斜边比邻边;secA=c/b 余割(csc)等于斜边比对边。cscA=c/a 互余角的三角函数间的关系 sin(90°-α)=cosα,cos(90°-α)=sinα, tan(90°-α)=cotα,cot(90°-α)=tanα。 平方关系: sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α) 积的关系: sinα=tanα·cosα cosα=cotα·sinα tanα=sinα·secα cotα=cosα·cscα secα=tanα·cscα cscα=secα·cotα 倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 中考数学知识点复习口诀 1.有理数的加法运算: 同号相加一边倒;异号相加“大”减“小”, 符号跟着大的跑;绝对值相等“零”正好. 2.合并同类项: 合并同类项,法则不能忘,只求系数和,字母、指数不变样. 3.去、添括号法则: 去括号、添括号,关键看符号, 括号前面是正号,去、添括号不变号, 括号前面是负号,去、添括号都变号. 4.一元一次方程: 已知未知要分离,分离 方法 就是移,加减移项要变号,乘除移了要颠倒. 5.平方差公式: 平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆. 5.1完全平方公式: 完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央; 首±尾括号带平方,尾项符号随中央. 5.2因式分解: 一提(公因式)二套(公式)三分组,细看几项不离谱, 两项只用平方差,三项十字相乘法,阵法熟练不马虎, 四项仔细看清楚,若有三个平方数(项), 就用一三来分组,否则二二去分组, 五项、六项更多项,二三、三三试分组, 以上若都行不通,拆项、添项看清楚. 5.3单项式运算: 加、减、乘、除、乘(开)方,三级运算分得清, 系数进行同级(运)算,指数运算降级(进)行. 5.4一元一次不等式解题的一般步骤: 去分母、去括号,移项时候要变号,同类项合并好,再把系数来除掉, 两边除(以)负数时,不等号改向别忘了. 5.5一元一次不等式组的解集: 大大取较大,小小取较小,小大、大小取中间,大小、小大无处找. 一元二次不等式、一元一次绝对值不等式的解集: 大(鱼)于(吃)取两边,小(鱼)于(吃)取中间. 6.1分式混合运算法则: 分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘); 乘法进行化简,因式分解在先,分子分母相约,然后再行运算; 加减分母需同,分母化积关键;找出最简公分母,通分不是很难; 变号必须两处,结果要求最简. 6.2分式方程的解法步骤: 同乘最简公分母,化成整式写清楚, 求得解后须验根,原(根)留、增(根)舍,别含糊. 6.3最简根式的条件: 最简根式三条件,号内不把分母含, 幂指数(根指数)要互质、幂指比根指小一点. 6.4特殊点的坐标特征: 坐标平面点(x,y),横在前来纵在后; (+,+),(-,+),(-,-)和(+,-),四个象限分前后; x轴上y为0,x为0在y轴. 象限角的平分线: 象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵却相反. 平行某轴的直线: 平行某轴的直线,点的坐标有讲究, 直线平行x轴,纵坐标相等横不同; 直线平行于y轴,点的横坐标仍照旧. 6.5对称点的坐标: 对称点坐标要记牢,相反数位置莫混淆, x轴对称y相反,y轴对称x相反; 原点对称记,横纵坐标全变号. 7.1自变量的取值范围: 分式分母不为零,偶次根下负不行; 零次幂底数不为零,整式、奇次根全能行. 7.2函数图象的移动规律: 若把一次函数的解析式写成y=k(x+0)+b, 二次函数的解析式写成y=a(x+h)2+k的形式, 则可用下面的口诀 “左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了”. 7.3一次函数的图象与性质的口诀: 一次函数是直线,图象经过三象限; 正比例函数更简单,经过原点一直线; 两个系数k与b,作用之大莫小看,k是斜率定夹角,b与y轴来相见, k为正来右上斜,x增减y增减; k为负来左下展,变化规律正相反; k的绝对值越大,线离横轴就越远. 7.4二次函数的图象与性质的口诀: 二次函数抛物线,图象对称是关键; 开口、顶点和交点,它们确定图象现; 开口、大小由a断,c与y轴来相见; b的符号较特别,符号与a相关联; 顶点位置先找见,y轴作为参考线; 左同右异中为0,牢记心中莫混乱; 顶点坐标最重要,一般式配方它就现; 横标即为对称轴,纵标函数最值见. 若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换. 7.5反比例函数的图象与性质的口诀: 反比例函数有特点,双曲线相背离得远; k为正,图在一、三(象)限,k为负,图在二、四(象)限; 图在一、三函数减,两个分支分别减. 图在二、四正相反,两个分支分别增; 线越长越近轴,永远与轴不沾边. 8.1特殊三角函数值记忆: 首先记住30度、45度、60度的正弦值、余弦值的分母都是2, 正切、余切的分母都是3,分子记口诀“123,321,三九二十七”既可. 三角函数的增减性:正增余减 8.2平行四边形的判定: 要证平行四边形,两个条件才能行, 一证对边都相等,或证对边都平行, 一组对边也可以,必须相等且平行. 对角线,是个宝,互相平分“跑不了”, 对角相等也有用,“两组对角”才能成. 8.3梯形问题的辅助线: 移动梯形对角线,两腰之和成一线; 平行移动一条腰,两腰同在“△”现; 延长两腰交一点,“△”中有平行线; 作出梯形两高线,矩形显示在眼前; 已知腰上一中线,莫忘作出中位线. 8.4添加辅助线歌: 辅助线,怎么添?找出规律是关键. 题中若有角(平)分线,可向两边作垂线; 线段垂直平分线,引向两端把线连; 三角形边两中点,连接则成中位线; 三角形中有中线,延长中线翻一番. 圆的证明歌: 圆的证明不算难,常把半径直径连; 有弦可作弦心距,它定垂直平分弦; 直径是圆弦,直圆周角立上边, 它若垂直平分弦,垂径、射影响耳边; 还有与圆有关角,勿忘相互有关联, 圆周、圆心、弦切角,细找关系把线连. 同弧圆周角相等,证题用它最多见, 圆中若有弦切角,夹弧找到就好办; 圆有内接四边形,对角互补记心间, 外角等于内对角,四边形定内接圆; 直角相对或共弦,试试加个辅助圆; 若是证题打转转,四点共圆可解难; 要想证明圆切线,垂直半径过外端, 直线与圆有共点,证垂直来半径连, 直线与圆未给点,需证半径作垂线; 四边形有内切圆,对边和等是条件; 如果遇到圆与圆,弄清位置很关键, 两圆相切作公切,两圆相交连公弦. 初三数学中考知识点 一次函数的定义 一次函数,也作线性函数,在x,y坐标轴中可以用一条直线表示,当一次函数中的一个变量的值确定时,可以用一元一次方程确定另一个变量的值。 函数的表示方法 列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。 解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。 图象法:形象直观,但只能近似地表达两个变量之间的函数关系。 一次函数的性质 一般地,形如y=kx+b(k,b是常数,且k≠0),那么y叫做x的一次函数,当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数 注:一次函数一般形式y=kx+b(k不为0) a)k不为0 b)x的指数是1 c)b取任意实数 确定函数定义域的方法 (1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 用待定系数法确定函数解析式的一般步骤 (1)根据已知条件写出含有待定系数的函数关系式; (2)将x、y的几对值或图像上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程 (3)解方程得出未知系数的值; (4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式。 2022中考数学知识点梳理相关 文章 : ★ 数学教学工作总结2022精选10篇 ★ 九年级数学复习计划范文 ★ 数学教师2022学期计划模板五篇 ★ 2022初三语文中考备考复习计划 ★ 2022教学工作计划范精选 ★ 2022高三数学教师期末教学工作总结10篇 ★ 初三数学教师工作总结2022最新 ★ 2022数学教研组工作计划通用10篇 ★ 教师教学个人工作总结2022大全5篇
中考数学必考知识点有哪些?
中考数学必考知识点如下:1、三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。2、圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。3、平行四边形的定义和相关概念,平行四边形的性质,平行四边形的对角线的性质,两条平行线距离。4、平行四边形的判定定理,平行四边形的性质与判定的综合运用,三角形的中位线定理。5、矩形的性质和判定,直角三角形斜边上中线,菱形的性质和判定定理,正方形的性质和判定。
中考数学重点难点分值题型分布
平移、旋转和翻折是几何变换中的三种基本变换。所谓几何变换就是根据确定的法则,对给定的图形(或其一部分)施行某种位置变化,然后在新的图形中分析有关图形之间的关系。纵观近几年全国各地的中考,都加大了这方面的考查力度,特别是2018年中考,这一部分的分值比前两年大幅度提高。为帮助大家把握好这部分知识,今天我们专门来讲讲旋转。旋转的定义常见的几种模型旋转类型题目举例1、正三角形类型在正ΔABC中,P为ΔABC内一点,将ΔABP绕A点按逆时针方向旋转60°,使得AB与AC重合。经过这样旋转变化,将图(1-1-a)中的PA、PB、PC三条线段集中于图(1-1-b)中的一个ΔP CP中,此时ΔP AP也为正三角形。例1如图(1-1),设P是等边ΔABC内的一点,PA=3, PB=4,PC=5,∠APB的度数是________.2、正方形类型在正方形ABCD中,P为正方形ABCD内一点,将ΔABP绕B点按顺时针方向旋转90°,使得BA与BC重合。经过旋转变化,将图(2-1-a)中的PA、PB、PC三条线段集中于图(2-1-b)中的ΔCPP 中,此时ΔBPP 为等腰直角三角形。例2 如图(2-1),P是正方形ABCD内一点,点P到正方形的三个顶点A、B、C的距离分别为PA=1,PB=2,PC=3。求正方形ABCD面积。3、等腰直角三角形类型在等腰直角三角形ΔABC中,∠C=90°, P为ΔABC内一点,将ΔAPC绕C点按逆时针方向旋转90°,使得AC与BC重合。经过这样旋转变化,在图(3-1-b)中的一个ΔP CP为等腰直角三角形。例3如图,在ΔABC中,∠ACB =90°,BC=AC,P为ΔABC内一点,且PA=3,PB=1,PC=2。求∠BPC的度数。总结:旋转是几何变换中的基本变换,它一般先对给定的图形或其中一部分,通过旋转,改变位置后得新组合,然后在新的图形中分析有关图形之间的关系,进而揭示条件与结论之间的内在联系,找出证题途径。