眼虫是自养还是异养
眼虫是自养。眼虫在运动中有趋光性,这是因为在鞭毛基都紧贴着储蓄泡有一红色眼点stigma,靠近眼点近鞭毛基都有一膨大部分,能接受光线,称光感受器photoreceptor。眼点是由埋在无色基质中的类胡萝卜素carotenoid的小颗粒组成的,也有人认为是由胡萝卜素carotene组成的,或是由B红萝卜素与血红素组成的。在环境不良的条件下如水池干涸眼虫体变圆,分泌一种胶质形成包囊,将自己包围起来。刚形成的包囊、可见有眼点,绿色,以后逐流变为黄色,眼点消失,代谢降低,可以生活很久,随风散布于各处。当环境适合时,虫体破囊而出,在出囊前进行一次或几次纵分裂。其他的方面多年来用眼虫进行基础理论的研究取得不少成果,不仅对遗传变异理论的探讨有意义,而且对了解有色、无色鞭毛虫类动物间的亲缘关系。及对了解动、植物的亲缘关系都有重要意义。也有用眼虫作为有机物污染环境的生物指标,用以确定有机污染的程度,另外眼虫对净化水的放射性物质也有作用。眼虫有鞭毛,其运行方式犹如螺旋桨,其推进能使得眼虫向前运动。Euglena是一种既可定为植物,也可定为动物的生物。它是单细胞生物,它不同的习性,例如摄食,排泄,新陈代谢,生长,繁殖,感受刺激性又使之与众不同,成为独立的一门。当眼虫发育成熟后,它会分裂为两个新细胞,或者或另一个细胞进行生育。
人肺癌细胞A549
该细胞系是1972年由Giard DJ通过肺癌组织移植培养建系的,源自一位58岁的白人男性。A549能通过胞苷二磷脂酰胆碱途径合成富含不饱和脂肪酸的卵磷脂。其形态为上皮细胞多角型。?
传代方法
1 : 3-1 : 6传代;每周2~3次
有研究探讨Id1在人肺癌细胞系A549肿瘤细胞球中的表达情况,为肺癌干细胞的基因靶向治疗提供理论依据。
方法: 应用干细胞无血清培养技术培养A549细胞肿瘤细胞球,采用克隆形成实验检测肺癌肿瘤球细胞增殖能力,流式细胞术检测ABCG2在肺癌肿瘤球细胞中的表达情况,Westernblotting检测Id1在肺癌肿瘤球细胞中的表达情况。
结果: 与贴壁细胞相比,人肺癌细胞系A549肿瘤细胞球细胞具有较强的克隆能力,且高表达ABCG2,符合肺癌干细胞的特点,Id1在人肺癌细胞系A549肿瘤细胞球细胞中高表达。
结论: Id1可能成为靶向肺癌干细胞肺癌治疗的靶点。
还有研究探讨全反式维甲酸(ATRA)对人肺腺癌细胞系A549细胞增殖及APLNR(apelinreceptor)基因表达的影响。
方法: 采用四甲基偶氮唑蓝(methylthiazolyltetrazolium,MTT)比色法检测ATRA对体外培养的A549细胞增殖的抑制情况,光学显微镜下观察细胞形态改变,流式细胞术检测细胞周期及凋亡,westernblot检测APLNR蛋白、cyclinD1及p16蛋白的表达情况。
结果: 经ATRA作用后,A549细胞增殖受到明显抑制且抑制程度呈剂量及时间依赖性(P均<0.01);其细胞形态发生明显变化,细胞周期被阻滞于G0/G1期且细胞凋亡率明显升高(P<0.01);westernblot结果显示,随着ATRA浓度的升高,APLNR蛋白及cyclinD1蛋白的表达水平降低,而p16蛋白的表达水平升高(P均<0.01)。
结论: ATRA可抑制A549细胞增殖并促进其凋亡,且能下调APLNR基因的表达。
主要参考资料
[1]??Id1在人肺癌细胞系A549肿瘤细胞球中的表达
[2]?全反式维甲酸对人肺癌细胞系A549细胞增殖及APLNR基因表达的影响
培养体系: D/F12+10%FBS+1%P/S
推荐使用海星配套人非小细胞肺癌细胞完全培养基,货号:TCH-G116
该培养基是由Cas9X海星生物技术团队精心优化,针对该细胞长期测试而来,可保持A549细胞理想的生长状态,已包含A549细胞生长的各种成分,无需额外添加,可直接用于A549细胞的体外培养。
人类微生物组计划的意义
人类基因组计划在2003年完成以后,许多科学家已经认识到解密人类基因组基因并不能完全掌握人类疾病与健康的关键问题,因为人类对自身体内存在的巨大数量的,与人体共生的微生物菌群几乎一无所知。人体内微生物细胞的数量是人体内细胞数量的10倍,初步的研究显示其所含基因数目的总和是人类基因组所含基因数目总和的100倍。但是,由于传统微生物学研究方法的局限,对生活在自己体内的95%以上的微生物没有任何研究数据。人类微生物组研究最终将帮助人类在健康评估与监测、新药研发和个体化用药,以及慢性病的早期诊断与治疗等方面取得突破性进展。
人类微生物组计划的与人体的关系
英国帝国理工大学教授尼科尔森的研究组2006年在《自然》杂志报道,通过对给药前大鼠的尿液代谢物进行全谱测定,可以把同一个遗传品系的大鼠分成两个类型,在给予高剂量的同一种药物后,一种类型表现出肝中毒的症状,另一种则安然无恙。研究发现,能够把遗传特性高度相似的个体区别开的尿液代谢物主要是肠道菌群产生的,未出现肝中毒症状的大鼠肠道里存在着可以把药物解毒的细菌,这些细菌保护了宿主。由此可见,肠道微生物组的基因组成与个体对药物的敏感性有密切关系。最近,他们又在《自然》杂志报道,通过对中国、美国、日本和英国等4个国家17个不同地区的4630名志愿者尿液代谢组学分析,发现高血压与肠道菌群的组成具有密切的关系。最新的研究进展表明,结构异常的肠道菌群很可能是肥胖、高血压、糖尿病、冠心病和中风等因饮食结构不当造成的代谢性疾病的直接诱因。美国华盛顿大学戈登小组2006年在《自然》杂志报道,肥胖小鼠的肠道菌群可以把人体不能消化的植物纤维,转变成短链脂肪酸供人体吸收利用,增加人体从食物中获得热量的能力。细菌还可以直接调节人体脂肪代谢途径的基因表达活性,减少脂肪酸的氧化,增加甘油三酯从源头上的合成。研究人员认为,肠道菌群产生的某种因子,很有可能是启动机体肥胖所必需的。英国里丁大学吉布森小组2007年在《糖尿病》杂志报道,高脂食物显著减少双歧杆菌等保护肠道屏障的细菌,致使产生内毒素的细菌明显增加,导致进入血液的内毒素增加,引起低度的慢性炎症,最后导致胰岛素抵抗等一系列代谢紊乱疾病。这一研究是通过动物模型进行的,在人体上是什么情况还需要研究。研究人体共生微生物的基因,为阐明代谢性疾病等多种慢性病的病因提供了一种创新性的思维和方法,并为有效预防和治疗这些疾病带来了新的希望。
什么叫整数因子?
一个数如果是整数因子,它要满足两个条件:1、这个数是整数;2、这个数是另一个数的因数。扩展资料两个数相乘,比如 3 * 5 = 15,我们称:3和5是因数,15是积。在这里,我们只是变了一种说法,3和5不叫因数了,我们叫它因子,我们的意义是一样的。所以,3和5是15的整数因子,但不是15的所有整数因子。1*15=15,3*5=15所以1,3,5,15 这四个数是15的所有整数因子。如果想求一个数的整数因子,就是把这个数写成两个数的乘积的形式,所有的可能的因子就是这个数的整数因子。
微生物将氮还原为氨的过程称为什么
微生物将氮还原为氨的过程称为生物固碳。自养的生物吸收无机碳,转化成有机物的过程。已经发现的生物固碳途径有:卡尔文循环(CBB,Calvin—Benson—Basshamcycle)、还原性三羧酸循环(rTCA,tricarboxylic acid cycle)、还原性乙酰辅酶A途径(W—L循环)、3—羟基丙酸/4—羟基丁酸(3HP/4HB)、3—羟基丙酸、二羧酸/4—羟基丁酸(DC/4HB)。最普遍的CO2固定途径是卡尔文循环,它广泛的存在于绿色植物体、蓝细菌、藻类、紫色细菌和一些变形菌门中,此种固碳途径也是能量利用效率最低的。生物固碳作用:生物固氮作用,是指大气中的分子态氮在微生物(固氮生物)体内由固氮酶催化还原为氨的过程。是土壤氮素的重要来源之一。按固氮微生物的特性和它们与其他生物的关系,一般分为共生固氮、自生固氮和联合固氮三种类型。共生固氮主要指豆科植物根瘤菌体系,其他还有非豆科植物—放线菌固氮体系以及萍蓝固氮体系。自生固氮指不需要同其他生物共生就能独立进行固氮的一类微生物,如固氮细菌和固氮蓝藻,包括自生自养固氮作用和自生异养固氮作用。
微生物将氮还原为氨的过程称为?
微生物将氮还原为氨的过程称为生物固氮。生物固氮是指固氮微生物将大气中的氮气还原成氨的过程,固氮生物都属于个体微小的原核生物,所以,固氮生物又叫做固氮微生物。根据固氮微生物的固氮特点以及与植物的关系,可以将它们分为自生固氮微生物、共生固氮微生物和联合固氮微生物三类。生物固氮是根际生物对话的典型例证之一。自然界中的氮素资源十分丰富,大气中近80%的气体为氮素。但只有少数原核生物,即细菌和蓝绿藻(蓝藻细菌)能够固定空气中的氮素。这些原核生物通过自生或与植物共生,将大气中的氮气转化成能被植物吸收利用的氮素,称为生物固氮。其他的原核生物和真核生物均不能利用大气中的氮素。与工业固氮的高温高压条件相比,生物固氮在常温常压下就可以进行,是生物圈中氮循环的主要氮源之一,所固定的氮素在自然界中相当客观。分类:生物固氮是指固氮微生物将大气中的氮还原成氨的过程。可以分为共生固氮微生物和自生固氮微生物两大类。共生固氮微生物的特点是与一些绿色植物互利共生,如根瘤菌。它在土壤中分布广泛,呈棒形、“T”形或“Y”形,只有侵入到豆科植物的根内才能完成固氮作用,具有一定的专一性,某种特定的根瘤菌只能侵入某种特定的豆科植物(大豆根瘤菌只能侵入大豆的根,蚕豆根瘤菌可能侵入蚕豆、菜豆和豇豆)。它们与豆科植物的共生关系表现为:豆科植物通过光合作用制造的有机物,一部分提供给根瘤菌,根瘤菌通过固氮作用制造的氨则提供给豆科植物。其代谢类型为异养需氧型,而且固氮量较大。自生固氮微生物的特点是在土壤中能够独立进行固氮的微生物,如圆褐固氮菌。它呈杆状或球状,它具有较强的固氮能力,并且能够分泌生长素,促进植物的生长和果实的发育。其代谢类型为异养需氧型,其固氮量较小。
光合作用过程
光合作用的过程如下:光合作用的过程是一个比较复杂的问题,从表面上看,光合作用的总反应式似乎是一个简单的氧化还原过程,但实质上包括一系列的光化学步骤和物质转变问题。根据现代的资料,整个光合作用大致可分为下列3大步骤:①原初反应,包括光能的吸收、传递和转换;②电子传递和光合磷酸化,形成活跃化学能(ATP和NADPH);③碳同化,把活跃的化学能转变为稳定的化学能(固定CO2,形成糖类)。在介绍光合作用反应过程前,对光合作用过程中涉及的光合色素及光系统进行一定的了解是必要的。拓展:光合作用,通常是指绿色植物(包括藻类)吸收光能,把二氧化碳和水合成富能有机物,同时释放氧气的过程。其主要包括光反应、暗反应两个阶段,涉及光吸收、电子传递、光合磷酸化、碳同化等重要反应步骤,对实现自然界的能量转换、维持大气的碳-氧平衡具有重要意义。
光合作用全过程是怎样的
总反应:CO2 + H2018 ——→ (CH2O) + O218
注意:光合作用释放的氧气全部来自水,光合作用的产物不仅是糖类,还有氨基酸(无蛋白质)、脂肪,因此光合作用产物应当是有机物.
各步分反应:
H20→H+ O2(水的光解)
NADP+ + 2e- + H+ → NADPH(递氢)
ADP→ATP (递能)
CO2+C5化合物→C3化合物(二氧化碳的固定)
C3化合物→(CH2O)+ C5化合物(有机物的生成)
光合作用的过程:1.光反应阶段 光合作用第一个阶段中的化学反应,必须有光能才能进行,这个阶段叫做光反应阶段.光反应阶段的化学反应是在叶绿体内的类囊体上进行的.暗反应阶段 光合作用第二个阶段中的化学反应,没有光能也可以进行,这个阶段叫做暗反应阶段.暗反应阶段中的化学反应是在叶绿体内的基质中进行的.光反应阶段和暗反应阶段是一个整体,在光合作用的过程中,二者是紧密联系、缺一不可的.
光合作用是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存着能量的有机物,并且释放出氧的过程.我们每时每刻都在吸入光合作用释放的氧.我们每天吃的食物,也都直接或间接地来自光合作用制造的有机物.那么,光合作用是怎样发现的呢?
光合作用的发现 直到18世纪中期,人们一直以为植物体内的全部营养物质,都是从土壤中获得的,并不认为植物体能够从空气中得到什么.1771年,英国科学家普利斯特利发现,将点燃的蜡烛与绿色植物一起放在一个密闭的玻璃罩内,蜡烛不容易熄灭;将小鼠与绿色植物一起放在玻璃罩内,小鼠也不容易窒息而死.因此,他指出植物可以更新空气.但是,他并不知道植物更新了空气中的哪种成分,也没有发现光在这个过程中所起的关键作用.后来,经过许多科学家的实验,才逐渐发现光合作用的场所、条件、原料和产物.下面介绍其中几个著名的实验.1864年,德国科学家萨克斯做了这样一个实验:把绿色叶片放在暗处几小时,目的是让叶片中的营养物质消耗掉.然后把这个叶片一半曝光,另一半遮光.过一段时间后,用碘蒸气处理叶片,发现遮光的那一半叶片没有发生颜色变化,曝光的那一半叶片则呈深蓝色.这一实验成功地证明了绿色叶片在光合作用中产生了淀粉.
1880年,德国科学家恩吉尔曼用水绵进行了光合作用的实验:把载有水绵和好氧细菌的临时装片放在没有空气并且是黑暗的环境里,然后用极细的光束照射水绵.通过显微镜观察发现,好氧细菌只集中在叶绿体被光束照射到的部位附近;如果上述临时装片完全暴露在光下,好氧细菌则集中在叶绿体所有受光部位的周围.恩吉尔曼的实验证明:氧是由叶绿体释放出来的,叶绿体是绿色植物进行光合作用的场所.
光合作用的过程:
光反应阶段 光合作用第一个阶段中的化学反应,必须有光能才能进行,这个阶段叫做光反应阶段.光反应阶段的化学反应是在叶绿体内的类囊体上进行的.
暗反应阶段 光合作用第二个阶段中的化学反应,没有光能也可以进行,这个阶段叫做暗反应阶段.暗反应阶段中的化学反应是在叶绿体内的基质中进行的.光反应阶段和暗反应阶段是一个整体,在光合作用的过程中,二者是紧密联系、缺一不可的.
光合作用的重要意义 光合作用为包括人类在内的几乎所有生物的生存提供了物质来源和能量来源.因此,光合作用对于人类和整个生物界都具有非常重要的意义.光合作用的意义可以概括为以下几个方面;
第一,制造有机物.绿色植物通过光合作用制造有机物的数量是非常巨大的.据估计,地球上的绿色植物每年大约制造四五千亿吨有机物,这远远超过了地球上每年工业产品的总产量.所以,人们把地球上的绿色植物比作庞大的“绿色工厂”.绿色植物的生存离不开自身通过光合作用制造的有机物.人类和动物的食物也都直接或间接地来自光合作用制造的有机物.
第二,转化并储存太阳能.绿色植物通过光合作用将太阳能转化成化学能,并储存在光合作用制造的有机物中.地球上几乎所有的生物,都是直接或间接利用这些能量作为生命活动的能源的.煤炭、石油、天然气等燃料中所含有的能量,归根到底都是古代的绿色植物通过光合作用储存起来的.
第三,使大气中的氧和二氧化碳的含量相对稳定.据估计,全世界所有生物通过呼吸作用消耗的氧和燃烧各种燃料所消耗的氧,平均为10000 t/s(吨每秒).以这样的消耗氧的速度计算,大气中的氧大约只需二千年就会用完.然而,这种情况并没有发生.这是因为绿色植物广泛地分布在地球上,不断地通过光合作用吸收二氧化碳和释放氧,从而使大气中的氧和二氧化碳的含量保持着相对的稳定.
第四,对生物的进化具有重要的作用.在绿色植物出现以前,地球的大气中并没有氧.只是在距今20亿至30亿年以前,绿色植物在地球上出现并逐渐占有优势以后,地球的大气中才逐渐含有氧,从而使地球上其他进行有氧呼吸的生物得以发生和发展.由于大气中的一部分氧转化成臭氧(O3).臭氧在大气上层形成的臭氧层,能够有效地滤去太阳辐射中对生物具有强烈破坏作用的紫外线,从而使水生生物开始逐渐能够在陆地上生活.经过长期的生物进化过程,最后才出现广泛分布在自然界的各种动植物.