avalon总线

时间:2024-06-22 20:22:53编辑:揭秘君

Avalon总线的其他特性和约定

Avalon总线还包括许多其他特性和约定,用以支持SOPC Builder软件自动生成系统、总线和外设,包括:● 最大4GB的地址空间——存储器和外设可以映像到32位地址空间中的任意位置● 内置地址译码——Avalon总线自动产生所有外设的片选信号,极大地简化了基于Avalon总线的外设的设计工作● 多主设备总线结构——Avalon总线上可以包含多个主外设,并自动生成仲裁逻辑● 采用向导帮助用户配置系统——SOPC Builder提供图形化的向导帮助用户进行总线配置(添加外设、指定主/从关系、定义地址映像等)。Avalon总线结构将根据用户在向导中输入的参数自动生成● 动态地址对齐——如果参与传输的双方总线宽度不一致,Avalon总线自动处理数据传输的细节,使得不同数据总线宽度的外设能够方便地连接

Avalon总线的Avalon总线的特点有

● 所有外设的接口与Avalon总线时钟同步,不需要复杂的握手/应答机制。这样就简化了Avalon总 线的时序行为,而且便于集成高速外设。Avalon总线以及整个系统的性能可以采用标准的同步时序分析技术来评估。● 所有的信号都是高电平或低电平有效,便于信号在总线中高速传输。在Avalon总线中,由数据选择器(而不是三态缓冲器)决定哪个信号驱动哪个外设。因此外设即使在未被选中时也不需要将输出置为高阻态。● 为了方便外设的设计,地址、数据和控制信号使用分离的、专用的端口。外设不需要识别地址总线周期和数据总线周期,也不需要在未被选中时使输出无效。分离的地址、数据和控制通道还简化了与片上用户自定义逻辑的连接 。

Avalon总线的Avalon总线接口分类

可分为两类:Slave和Master。slave是一个从控接口,而master是一个主控接口。slave和master主要的区别是对于Avalon总线控制权的把握。master接口具有相接的Avalon总线控制权,而slave接口是被动的。常见的Avalon的传输结构有:Avalon总线从读(slave read),Avalon总线带一个延迟状态从读,Avalon总线从写(slave write),Avalon总线带一个延迟状态从写。

Avalon总线的Avalon 总线模块为外设提供的服务

Avalon 总线模块为连接到总线的Avalon 外设提供了以下的服务:■ 数据通道多路转换——Avalon 总线模块的多路复用器从被选择的从外设向相关主外设传输数据。■ 地址译码——地址译码逻辑为每一个外设提供片选信号。这样,单独的外设不需要对地址线译码以产生片选信号,从而简化了外设的设计。■ 产生等待状态(Wait-State)——等待状态的产生拓展了一个或多个周期的总线传输,这有利于满足某些特殊的同步外设的需要。当从外设无法在一个时钟周期内应答的时候,产生的等待状态可以使主外设进入等待状态。在读使能及写使能信号需要一定的建立时间/保持时间要求的时候也可以产生等待状态。■ 动态总线宽度——动态总线宽度隐藏了窄带宽外设与较宽的Avalon 总线(或者Avalon 总线与更高带宽的外设)相接口的细节问题。举例来说,一个32 位的主设备从一个16 位的存储器中读数据的时候,动态总线宽度可以自动的对16 位的存储器进行两次读操作,从而传输32 位的数据。这便减少了主设备的逻辑及软件的复杂程度,因为主设备不需要关心外设的物理特性。■ 中断优先级(Interrupt-Priority)分配——当一个或者多个从外设产生中断的时候,Avalon 总线模块根据相应的中断请求号(IRQ)来判定中断请求。■ 延迟传输(Latent Transfer)能力——在主、从设备之间进行带有延迟传输的逻辑包含于Avalon总线模块的内部。■ 流式读写(Streaming Read and Write)能力——在主、从设备之间进行流传输使能的逻辑包含于Avalon 总线模块的内部。

软核处理器和硬核处理器的区别

一、含义不同软核通常以HDL文本的形式提交给用户。它已经过RTL级设计的优化和验证,但不包含任何具体的物理信息。一个硬核是一个已经被集成和连接的处理器。二、功能不同硬核是一种基于半导体技术的物理设计,具有性能保证。提供给用户的形式是电路物理结构的掩模布局和一套完整的工艺文件,可以作为一套完整的技术。软核用户可以合成正确的门电路级设计网表,并能进行后续的结构设计,具有很大的灵活性。借助EDA综合工具,可以方便地与其他外部逻辑电路集成,并根据不同的半导体工艺设计成不同性能的器件。三、范围不同软件核心包括逻辑描述(RTL和门级Verilog-HDL或VHDL代码)、设备内部接线清单和可测试性设计,这些设计不能通过台式仪表和信号仪表、示波器、电流表和电压表进行测试。用户可以对软核进行修改,实现所需的电路系统。它主要应用于对速度性能要求很高的复杂系统中,如接口、编码、解码、算法和信道加密等。硬核的设计和工艺已经完成,不能更改。其产品包括存储器、模拟电路和总线设备。常用的嵌入式处理器硬核包括arm、MIPs、PowerPC、Intel x86、Motorola 68000等。参考资料来源;百度百科——软核处理器

软核处理器的简介

前不久,Altera 正式推出了Nios II系列32位RSIC嵌入式处理器。Nios II系列软核处理器是Altera的第二代FPGA嵌入式处理器,其性能超过200DMIPS,在Altera FPGA中实现仅需35美分。Altera的Stratix 、Stratix GX、 Stratix II和 Cyclone系列FPGA全面支持Nios II处理器,以后推出的FPGA器件也将支持Nios II。自Altera于2000年推出第一代16位Nios处理器以来,已经交付了13000多套Nios开发套件,Nios成为最流行的软核处理器。刚推出的Nios II系列采用全新的架构,比第一代Nios具有更高水平的效率和性能。和第一代相比,Nios II核平均占用不到50%的FPGA资源,而计算性能增长了1倍。Nios II系列包括3种产品,分别是:Nios II/f(快速)——最高的系统性能,中等FPGA使用量;Nios II/s(标准)——高性能,低FPGA使用量;Nios II/e(经济)——低性能,最低的FPGA使用量。这3种产品具有32位处理器的基本结构单元——32位指令大小,32位数据和地址路径,32位通用寄存器和32个外部中断源;使用同样的指令集架构(ISA),100%二进制代码兼容,设计者可以根据系统需求的变化更改CPU,选择满足性能和成本的最佳方案,而不会影响已有的软件投入。特别是,Nios II系列支持使用专用指令。专用指令是用户增加的硬件模块,它增加了算术逻辑单元(ALU)。用户能为系统中使用的每个Nios II处理器创建多达256个专用指令,这使得设计者能够细致地调整系统硬件以满足性能目标。专用指令逻辑和本身Nios II指令相同,能够从多达两个源寄存器取值,可选择将结果写回目标寄存器。同时,Nios II系列支持60多个外设选项,开发者能够选择合适的外设,获得最合适的处理器、外设和接口组合,而不必支付根本不使用的硅片功能。Nios II系列能够满足任何应用32位嵌入式微处理器的需要,客户可以将第一代Nios处理器设计移植到某种Nios II处理器上,Altera将长期支持现有FPGA系列上的第一代Nios处理器。另外,Altera提供了一键式移植选项,可以升级至Nios II系列。Nios II处理器也能够在HardCopy器件中实现,Altera还为基于Nios II处理器的系统提供ASIC的移植方式。Nios II处理器具有完善的软件开发套件,包括编译器、集成开发环境(IDE)、JTAG调试器、实时操作系统(RTOS)和TCP/IP协议栈。设计者能够用Altera Quartus II开发软件中的SOPC Builder系统开发工具很容易地创建专用的处理器系统,并能够根据系统的需求添加Nios II处理器核的数量。使用Nios II软件开发工具能够为Nios II系统构建软件,即一键式自动生成适用于系统硬件的专用C/C++运行环境。Nios II集成开发环境(IDE)提供了许多软件模板,简化了项目设置。此外,Nios II开发套件包括两个第三方实时操作系统(RTOS)——MicroC/OS-II(Micrium),Nucleus Plus(ATI/Mentor)以及供网络应用使用的TCP/IP协议栈。长期以来,Altera一直推行嵌入式处理器战略的原因是,随着应用的ASIC开发日益受到成本的困扰,OEM日渐转向FPGA来构建自己的系统。这些系统中绝大多数需要一个处理器,而Altera正是为设计者提供了为FPGA优化的灵活的嵌入式处理器方案,可以满足16位和32位嵌入式处理器市场的需求。估计到2007年,该市场价值将到达110亿美元。在FPGA中使用软核处理器比硬核的优势在于,硬核实现没有灵活性,通常无法使用最新的技术。随着系统日益先进,基于标准处理器的方案会被淘汰,而基于Nios II处理器的方案是基于HDL源码构建的,能够修改以满足新的系统需求,避免了被淘汰的命运。将处理器实现为HDL的IP核,开发者能够完全定制CPU和外设,获得恰好满足需求的处理器。

NIOS嵌入式处理器的基本信息

Altera建议新设计采用Nios II处理器。在二○世纪九十年度末,可编程逻辑器件(PLD)的复杂度已经能够在单个可编程器件内实现整个系统。完整的单芯片系统(SOC)概念是指在一个芯片中实现用户定义的系统,它通常暗指包括片内存储器和外设的微处理器。最初宣称真正的SOC――或可编程单芯片系统(SOPC)――能够提供基于PLD的处理器。在2000年,Altera发布了Nios处理器,这是Altera Excalibur嵌入处理器计划中第一个产品,它成为业界第一款为可编程逻辑优化的可配置处理器。本文阐述开发Nios处理器设计环境的过程和涉及的决策,以及它如何演化为一种SOPC工具。Altera很清楚地意识到,如果我们把可编程逻辑的固有的优势集成到嵌入处理器的开发流程中,我们就会拥有非常成功的产品。基于PLD的处理器恰恰具有应用所需的特性。一旦定义了处理器之后,设计者就“具备”了体系结构,可放心使用。因为PLD和嵌入处理器随即就生效了,可以马上开始设计软件原型。CPU周边的专用硬件逻辑可以慢慢地集成进去,在每个阶段软件都能够进行测试,解决遇到的问题。另外,软件组可以对结构方面提出一些建议,改善代码效率和/或处理器性能,这些软件/硬件权衡可以在硬件设计过程中间完成。Nios II系列软核处理器是Altera的第二代FPGA嵌入式处理器,其性能超过200DMIPS,在Altera FPGA中实现仅需35美分。Altera的Stratix 、Stratix GX、 Stratix II和 Cyclone系列FPGA全面支持Nios II处理器,以后推出的FPGA器件也将支持Nios II。自Altera于2000年推出第一代16位Nios处理器以来,已经交付了13000多套Nios开发套件,Nios成为最流行的软核处理器。刚推出的Nios II系列采用全新的架构,比第一代Nios具有更高水平的效率和性能。和第一代相比,Nios II核平均占用不到50%的FPGA资源,而计算性能增长了1倍。Nios II系列包括3种产品,分别是:Nios II/f(快速)——最高的系统性能,中等FPGA使用量;Nios II/s(标准)——高性能,低FPGA使用量;Nios II/e(经济)——低性能,最低的FPGA使用量。这3种产品具有32位处理器的基本结构单元——32位指令大小,32位数据和地址路径,32位通用寄存器和32个外部中断源;使用同样的指令集架构(ISA),100%二进制代码兼容,设计者可以根据系统需求的变化更改CPU,选择满足性能和成本的最佳方案,而不会影响已有的软件投入。特别是,Nios II系列支持使用专用指令。专用指令是用户增加的硬件模块,它增加了算术逻辑单元(ALU)。用户能为系统中使用的每个Nios II处理器创建多达256个专用指令,这使得设计者能够细致地调整系统硬件以满足性能目标。专用指令逻辑和本身Nios II指令相同,能够从多达两个源寄存器取值,可选择将结果写回目标寄存器。同时,Nios II系列支持60多个外设选项,开发者能够选择合适的外设,获得最合适的处理器、外设和接口组合,而不必支付根本不使用的硅片功能。Nios II系列能够满足任何应用32位嵌入式微处理器的需要,客户可以将第一代Nios处理器设计移植到某种Nios II处理器上,Altera将长期支持现有FPGA系列上的第一代Nios处理器。另外,Altera提供了一键式移植选项,可以升级至Nios II系列。Nios II处理器也能够在HardCopy器件中实现,Altera还为基于Nios II处理器的系统提供ASIC的移植方式。Nios II处理器具有完善的软件开发套件,包括编译器、集成开发环境(IDE)、JTAG调试器、实时操作系统(RTOS)和TCP/IP协议栈。设计者能够用Altera Quartus II开发软件中的SOPC Builder系统开发工具很容易地创建专用的处理器系统,并能够根据系统的需求添加Nios II处理器核的数量。使用Nios II软件开发工具能够为Nios II系统构建软件,即一键式自动生成适用于系统硬件的专用C/C++运行环境。Nios II集成开发环境(IDE)提供了许多软件模板,简化了项目设置。此外,Nios II开发套件包括两个第三方实时操作系统(RTOS)——MicroC/OS-II(Micrium),Nucleus Plus(ATI/Mentor)以及供网络应用使用的TCP/IP协议栈。长期以来,Altera一直推行嵌入式处理器战略的原因是,随着应用的ASIC开发日益受到成本的困扰,OEM日渐转向FPGA来构建自己的系统。这些系统中绝大多数需要一个处理器,而Altera正是为设计者提供了为FPGA优化的灵活的嵌入式处理器方案,可以满足16位和32位嵌入式处理器市场的需求。估计到2007年,该市场价值将到达110亿美元。在FPGA中使用软核处理器比硬核的优势在于,硬核实现没有灵活性,通常无法使用最新的技术。随着系统日益先进,基于标准处理器的方案会被淘汰,而基于Nios II处理器的方案是基于HDL源码构建的,能够修改以满足新的系统需求,避免了被淘汰的命运。将处理器实现为HDL的IP核,开发者能够完全定制CPU和外设,获得恰好满足需求的处理器。Nios II嵌入式处理器特性嵌入式处理器Nios®II系列为Altera® FPGA和可编程片上系统(SOPC)的集成应用专门做了优化。表1详细描述了Nios II软核嵌入式处理器系列的特性,更多通用信息请参阅Nios II简介页面。表1. Nios II嵌入处理器系列特性

上一篇:atmega2560

下一篇:domino.exe