平面直角坐标系与数学上的平面直角坐标系有什么不同?
主要的不同在于:1、数轴不同;2、象限不同;3、角度起始方位不同。也就是说:1、测量学上的平面直角坐标系的横轴是Y轴,纵轴是X轴。也就是东西方向是Y方向,南北方向是X方向,与实地方向有关。纵轴X正的一端(北端)为方位角0°,顺时钟角度增加,即横轴Y右端(东端)为90°、纵轴负的一端(南端)为180°、横轴Y左端(西端)为270°、0°位置也就是360°位置数学上的角度从横轴右端逆时钟起算。2、数学上的平面直角坐标系横轴是X轴,纵轴是Y轴。没有与实地方向的对应关系。X轴和Y轴把坐标平面分成四个象限,右上面的叫做第一象限,其他三个部分按逆时针方向依次叫做第二象限、第三象限和第四象限。象限以数轴为界,横轴、纵轴上的点及原点不属于任何象限。一般情况下,x轴和y轴取相同的单位长度。
什么是平面直角坐标系?
平面直角坐标系有两个坐标轴,其中横轴为X轴(x-axis),取向右方向为正方向;纵轴为Y轴(y-axis),取向上为正方向。扩展资料平面直角坐标系(rectangular coordinate system)是指在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系。通常,两条数轴分别置于水平位置与垂直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴,垂直的数轴叫做Y轴,X轴Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。传说:有一天,笛卡尔(Descartes 1596—1650,法国哲学家、数学家、物理学家)生病卧床,但他头脑一直没有休息,在反复思考一个问题:几何图形是直观的,而代数方程则比较抽象,能不能用几何图形来表示方程呢?这里,关键是如何把组成几何的图形的点和满足方程的每一组“数”挂上钩。他就拼命琢磨。通过什么样的办法、才能把“点”和“数”联系起来。突然,他看见屋顶角上的一只蜘蛛,拉着丝垂了下来,一会儿,蜘蛛又顺着丝爬上去,在上边左右拉丝。蜘蛛的“表演”,使笛卡尔思路豁然开朗。他想,可以把蜘蛛看做一个点,它在屋子里可以上、下、左、右运动,能不能把蜘蛛的每个位置用一组数确定下来呢?他又想,屋子里相邻的两面墙与地面交出了三条直线,如果把地面上的墙角作为起点,把交出来的三条线作为三根数轴,那么空间中任意一点的位置,不是都可以用这三根数轴上找到的有顺序的三个数来表示吗?反过来,任意给一组三个有顺序的数,例如3、2、1,也可以用空间中的一个点 P来表示它们。同样,用一组数(a, b)可以表示平面上的一个点,平面上的一个点也可以用一组二个有顺序的数来表示。于是在蜘蛛的启示下,笛卡尔创建了直角坐标系。