勾股数

时间:2024-05-16 14:03:07编辑:揭秘君

常见的勾股数有哪些

勾股数,又名毕氏三元数。勾股数就是可以构成一个直角三角形三边的一组正整数。常见的勾股数有(3,4,5)、(5,12,13)、(8,15,17)、(7,24,25)等。 什么是勾股数 勾股数指的是组成一个直角三角形的三条边长,三条边长都为正整数,如直角三角形的两条直角边为a和b,斜边为c,那么两条直角边的平方+b的平方等于斜边c的平方,那么这一组数组就叫做勾股数。一般把较短的直角边称为勾,较长直角边称为股,而斜边则为弦。 勾股定理 勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。 勾股数记忆口诀 奇数组口诀:平方后拆成连续两个数。 3^2=9,9=4+5,于是3,4,5是一组勾股数。 5^2=25,25=12+13,于是5,12,13是一组勾股数。 7^2=49,49=24+25,于是7,24,25是一组勾股数。 9^2=81,81=40+41,于是9,40,41是一组勾股数。 偶数组口诀:平方的一半再拆成差2的两个数。 4^2=16,16/2=8,8=3+5,于是3,4,5是一组勾股数。 6^2=36,36/2=18,18=8+10,于是6,8,10是一组勾股数。 8^2=64,64/2=32,32=15+17,于是8,15,17是一组勾股数。 10^2=100,100/2=50,50=24+26,于是10,24,26是一组勾股数。 12^2=144,144/2=72,72=35+37,于是12,35,37是一组勾股数。

常见的勾股数有哪些?

勾股数(又名商高数或毕氏数)是由三个正整数组成的数组。勾股定理:直角三角形两条直角边a、b的平方和等于斜边c的平方(a²+b²=c²)第一类型当a为大于1的奇数2n+1时,b=2n²+2n, c=2n²+2n+1。实际上就是把a的平方数拆成两个连续自然数,例如:n=1时(a,b,c)=(3,4,5)n=2时(a,b,c)=(5,12,13)n=3时(a,b,c)=(7,24,25)……这是最经典的一个套路,而且由于两个连续自然数必然互质,所以用这个套路得到的勾股数组全部都是互质的。​常见的勾股数如下所示:

勾股数是什么意思?

勾股数又名毕氏三元数 。勾股数就是可以构成一个直角三角形三边的一组正整数。
常见的特殊勾股数:3 4 5;5 12 13; 6 8 10;8,15,17;9 12 15;7 24 25;9 40 41;10 24 26;11 60 61;12 16 20;12 35 37;13 84 85;14 48 50;15 20 25;15 36 39;15 112 113;16 30 34;16 63 65;18 24 30;18 80 82;20 21 29;20 48 52;20 99 101;21 28 35;21 72 75;22 120 122;24 32 40;24 45 51;24 70 74;25 60 65;27 36 45;28 45 53;30 40 50;30 72 78;32 60 68;33 44 55;33 56 65;35 84 91;36 48 60;36 77 85;39 52 65;39 80 89;40 42 58;40 75 85 ;40 96 104;42 56 70 ; 45 60 75 ; 48 55 73 ; 48 64 80 ; 48 90 102 ; 51 68 85 ;54 72 90 ; 56 90 106 ; 57 76 95 ; 60 63 87 ; 60 80 100 ;60 91 109 ; 63 84 105 ; 65 72 97 ; 66 88 110 ; 69 92 115 ;72 96 120 ; 75 100 125 ; 80 84 116等等。
勾股数满足勾股定理。
勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。
勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。


勾股数是什么?

勾股数又名毕氏三元数 。勾股数就是可以构成一个直角三角形三边的一组正整数。
常见的特殊勾股数:3 4 5;5 12 13; 6 8 10;8,15,17;9 12 15;7 24 25;9 40 41;10 24 26;11 60 61;12 16 20;12 35 37;13 84 85;14 48 50;15 20 25;15 36 39;15 112 113;16 30 34;16 63 65;18 24 30;18 80 82;20 21 29;20 48 52;20 99 101;21 28 35;21 72 75;22 120 122;24 32 40;24 45 51;24 70 74;25 60 65;27 36 45;28 45 53;30 40 50;30 72 78;32 60 68;33 44 55;33 56 65;35 84 91;36 48 60;36 77 85;39 52 65;39 80 89;40 42 58;40 75 85 ;40 96 104;42 56 70 ; 45 60 75 ; 48 55 73 ; 48 64 80 ; 48 90 102 ; 51 68 85 ;54 72 90 ; 56 90 106 ; 57 76 95 ; 60 63 87 ; 60 80 100 ;60 91 109 ; 63 84 105 ; 65 72 97 ; 66 88 110 ; 69 92 115 ;72 96 120 ; 75 100 125 ; 80 84 116等等。
勾股数满足勾股定理。
勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。
勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。


上一篇:四川2021高考一分一段表

下一篇:中国家博会京沪联动4月6日北京展览馆隆重开幕