勾股定理证明方法24种
勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。定理作用勾股定理是联系数学中最基本也是最原始的两个对象--数与形的第一定理。勾股定理导致不可通约量的发现,从而深刻揭示了数与量的区别,即所谓"无理数"与有理数的差别,这就是所谓第一次数学危机。
初二勾股定理证明方法
1、【证法1】(课本的证明)做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们拼成两个正方形.,这两个正方形的边长都是a + b,所以面积相等. 即a2+b2+4x1/2ab=c2+4x1/2ab, 整理得a2+b2=c2。
2、【证法2】(1876年美国总统Garfield证明)以a、b 为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角1ab形的面积等于2. 把这两个直角三角形拼成适合的形状,使A、E、B三点在一条直线上. ∵ RtΔEAD ≌ RtΔCBE,∴ ∠ADE = ∠BEC. ∵ ∠AED + ∠ADE = 90o, ∴ ∠AED + ∠BEC = 90o.∴ ∠DEC = 180o―90o= 90o. ∴ ΔDEC是一个等腰直角三角形, 12c2它的面积等于.又∵ ∠DAE = 90o, ∠EBC = 90o,∴ AD∥BC.∴ ABCD是一个直角梯形,它的面积等于1/2(a+b)2.∴1/2(a+b)2=2x1/2ab+1/2c2∴ a2+b2=c2。
3、【证法3】(利用切割线定理证明)在 RtΔABC中,设直角边BC = a,AC = b,斜边AB = c. 以B为圆心a为半径作圆,交AB及AB的延长线分别于D、E,则BD = BE = BC = a. 因为∠BCA = 90o,点C在⊙B上,所以AC是⊙B 的切线. 由切割线定理,得AC2=AExAD=(AB+BE)(AB-BD) =(c+a)(c-a)= c2-a2,即b2=c2-a2,∴ a2+b2=c2。
勾股定理16种证明方法
勾股定理16种证明方法勾股定理:直角三角形中,两条直角边的平方和等于斜边的平方,即在以a、b为直角边,c为斜边的三角形中有a^2+b^2=c^2。方法1/16证法一(邹元治证明):以a、b为直角边,以c为斜边做四个全等的三角形,按下图所示相拼,使A、E、B三点共线,B、F、C 三点共线,C、G、D三点共线。∵Rt△HAE≌Rt△EBF∴∠AHE=∠BEF∵∠AHE+∠AEH=90°∴∠BEF+∠AEH=90°∵A、E、B共线∴∠HEF=90°,四边形EFGH为正方形由于上图中的四个直角三角形全等,易得四边形ABCD为正方形∴正方形ABCD的面积=四个直角三角形的面积+正方形EFGH的面积∴(a+b)^2=4•(1/2)•ab+c^2,整理得a^2+b^2=c^2请点击输入图片描述2/16证法二(课本的证明):如上图所示两个边长为a+b的正方形面积相等,所以a^2+b^2+4•(1/2)•ab=c^2+4•(1/2)•ab,故a^2+b^2=c^2。请点击输入图片描述3/16证法三(赵爽弦图证明):以a、b为直角边,以c为斜边做四个全等的三角形,按下图所示相拼。易得四边形ABCD和四边形EFGH都是正方形∴正方形ABCD的面积=四个直角三角形的面积+正方形EFGH的面积∴c^2=4•(1/2)•ab+(b-a)^2 ,整理得a^2+b^2=c^2请点击输入图片描述4/16证法四(总统证明):如下图所示。易得△CDE为等腰直角三角形∴梯形ABCD的面积=两个直角三角形的面积+一个等腰三角形的面积∴1/2•(a+b)•(a+b)=2•(1/2)•ab+(1/2)•c^2,整理得a^2+b^2=c^2请点击输入图片描述5/16证法五(梅文鼎证明):以a、b为直角边,以c为斜边做四个全等的三角形,按下图所示相拼,使DEF在同一直线上,过C点作CI垂直于DF,交DF于I点。易得四边形ABEG、四边形CBDI、四边形FGHI都为正方形。∴多边形EGHCB的面积=正方形ABEG的面积-两个直角三角形的面积且多边形EGHCB的面积=正方形CBDI的面积+正方形FGHI的面积-两个直角三角形的面积∴正方形ABEG的面积=正方形CBDI的面积+正方形FGHI的面积∴c²=a²+b²请点击输入图片描述6/16证法六(项明达证明):以a、b为直角边,以c为斜边做两个全等的三角形,做一个边长为c的正方形,按下图所示相拼,使E、A、C在同一条直线上。过Q点作QP⊥AC,交AC于P点分别过F、B作QP的垂线段,交点分别为M、N易得四边形ABQF为正方形利用全等三角形的判定定理角角边(AAS)可得△AEF≌△QMF≌△BNQ,此时问题转化为梅文鼎证明。请点击输入图片描述7/16证法七(欧几里得证明):在直角边为a、b,斜边为c的直角三角形中,分别以a、b、c为边作正方形,如下图所示。连接FB和CD,过C点作CN⊥DE交DE于E点,交AB于M点。∵AF=AC,AB=AD,∠FAB=∠CAD,∴△FAB≌△CAD(SAS)而△FAB的面积=△CAD的面积=(½)•ac sin(90°+∠CAB)=(½)a²∵△CAD与矩形AMND等底等高∴矩形AMND的面积为△CAD面积的两倍,即a²同理可得矩形BMNE的面积为b²∵正方形ADEB的面积=矩形AMND的面积+矩形BMNE的面积∴c²=a²+b²请点击输入图片描述8/16证法八(相似三角形性质证明)如下图所示,在直角三角形ABC中,AC=b,BC=a,AB=c,∠ACB=90°,过C点作CD垂直于AB,交AB于D点。∵∠BDC=∠BCA=90°,∠B=∠B∴△BDC∽△BCA∴BD∶BC=BC∶BA∴BC²=BD•BA同理可得AC²=AD•AB∴BC²+AC²=BD•BA+AD•AB=(BD+AD)•AB=AB²,即a²+b²=c²请点击输入图片描述9/16证法九(杨作玫证明):做两个全等的直角三角形,设它们的两直角边分别为a、b(b>a)斜边长为c,再做一个边长为c的正方形,按下图所示相拼。过A点作AG⊥AC,交DF于G点,AG交DE于H点。过B作BI⊥AG,垂足为I点。过E点作EJ与CB的延长线垂直,垂足为J点,EJ交AG于K点,交DB于L点。∵∠BAE=90°∠GAC=90°∴∠EAK=∠BAC∵GA⊥AC,BC⊥AC∴GA∥BC∵EJ⊥BC∴EJ⊥GA∴∠EKA=∠C=90°而AE=AB=c∴△EAK≌△BAC(AAS)∴EK=a,KA=b由作法易得四边形BCAI为矩形∴AI=a,KI=b-a∵△BAC≌△EDF∴△EAK≌△EDF∴∠FED=∠KEA∴∠FEK=90°∴四边形EFGK为正方形,同时四边形DGIB为直角梯形用数字表示面积的编号(如图),则以c为边长的正方形的面积为c²=S1+S2+S3+S4+S5 ①∵S8+S3+S4=½[b+(b-a)]•[a+(b-a)]=b²-½ab ,S5=S8+S9∴S3+S4=b²-½ab-S8=b²-S1-S8②把②代入①得c²=S1+S2+b²-S1-S8+S8+S9=b²+S2+S9=b²+a²请点击输入图片描述10/16证法十(李锐证明):设直角三角形两直角边长分别为a、b(b>a),斜边长为c。做三个边长分别为a、b、c的正方形,按下图相拼,使AEG三点共线,过Q点作GM⊥AG,交点为M,用数字表示面积的编号。∵∠TBE=∠ABH=90°∴∠TBH=∠EBA∵∠T=∠BEA=90°,BT=BE=b∴△HBT≌△ABE(ASA)∴HT=AE=a,GH=GT-HT=b-a∵∠GHF+∠BHT=90°,∠TBH+∠BHT=90°∴∠GHF=∠TBH=∠DBC∵BD=BE-ED=b-a,∠G=∠BDC=90°∴△GHF≌△DBC(ASA),S7=S2由∠BAQ=∠BEA=90°,可知∠ABE=∠QAM∵AB=AQ=c∴△ABE≌△QAM(AAS)∴△QAM≌△HBT,S5=S8同时有AR=AE=QM=a,且∠QFM与∠ACR分别为∠GHF与∠DBC的余角∴∠QFM=∠ACR∵∠R=∠FMQ=90°∴△FMQ≌△CRA(AAS),S4=S6∵c²=S1+S2+S3+S4+S5,a²=S1+S6,b²=S3+S7+S8S7=S2,S8=S5,S4=S6∴a²+b²=S1+S6+S3+S7+S8=S1+S4+S3+S2+S5=c²请点击输入图片描述11/16证法十一(利用切割线定理证明):在直角三角形ABC中,∠ACB=90°,AC=b,AB=c,BC=a,以B为圆心,a为半径画圆,AB交圆与D点,AB的延长线交圆于E点。根据切割线定理(从圆外一点引圆的切线和割线,切线长是割线和这点到割线与圆交点的两条线段长的比例中项)可得:AC²=AD•AE∴b²=(c-a)(c+a)=c²-a²∴a²+b²=c²请点击输入图片描述12/16证法十二(利用多列米定理证明):在直角三角形ABC中,设BC=a,AC=b,斜边AB=c,过A点作AD∥CB,过B点作BD∥CA,则四边形ACBD为矩形,矩形ACBD内接于唯一的一个圆。根据多米列定理(圆内接四边形对角线的乘积等于两对边乘积之和)可得:AB•DC=DB•AC+AD•CB∵AB=DC=c,DB=AC=b,AD=CB=a∴c²=b²+a²请点击输入图片描述13/16证法十三(作直角三角形的内切圆证明):在Rt△ABC中,设直角边BC=a,AC=b,斜边AB=c。作Rt△ABC的内切圆⊙O,切点分别为D、E、F,如下图所示,设圆O的半径为r。∵AB=AF+BF,CB=BD+CD,AC=AE+CE∴AC+CB-AB=(AE+CE)+(BD+CD)-(AF+BF)=CE+CD=2r,即a+b-c=2r∴a+b=2r+c(a+b)²=(2r+c)²a²+b²+2ab=4(r²+rc)+c²∵S△ABC=½ab∴4S△ABC=2ab∵S△ABC=S△AOB+S△BOC+S△AOC=½cr+½ar+½br=½(a+b+c)r=½(2r+c+c)r=r²+rc∴4(r²+rc)=2ab∴a²+b²+2ab=2ab+c²∴a²+b²=c²请点击输入图片描述14/16证法十四(利用反证法证明):在Rt△ABC中,设直角边BC=a,AC=b,斜边AB=c。过C点作CD⊥AB,垂足为D点,如下图所示。假设a²+b²≠c²,即AC²+BC²≠AB²则由AB²=AB·AB=AB·(AD+BD)=AB·AD+AB·BD知AC²≠AB·AD或BC²≠AB·BD即AD∶AC≠AC∶AB或BD∶BC≠BC∶AB在△ADC和△ACB中∵∠A=∠A∴若AD∶AC≠AC∶AB,则∠ADC≠∠ACB在△CBD和△ACB中∵∠B=∠B∴若BD∶BC≠BC∶AB,则∠CDB≠∠ACB∵∠ACB=90°∴∠ADC≠90°,∠CDB≠90°这与CD⊥AB矛盾,所以假设不成立∴a²+b²=c²请点击输入图片描述15/16证法十五(辛卜松证明):直角三角形以a、b为直角边,以c为斜边。作边长为a+b的正方形。把正方形ABCD划分成上方左图所示的几个部分,则正方形ABCD的面积为(a+b)²=a²+b²+2ab把正方形ABCD划分成上方右图所示的几个部分,则正方形ABCD的面积为(a+b)²=4x½ab+c²=2ab+c²∴a²+b²+2ab=2ab+c²∴a²+b²=c²请点击输入图片描述16/16证法十六(陈杰证明):设直角三角形两直角边的长分别为a、b(b>a),斜边的长为c。做两个边长分别为a、b的正方形,把它们拼成如图所示形状,使E、H、M三点在一条直线上。 用数字表示面积的编号,如下图所示。在EH = b上截取ED = a,连结DA、DC,则 AD = c∵ EM = EH + HM = b + a , ED = a∴ DM = EM―ED = (b+a)―a = b又∵ ∠CMD = 90°,CM = a, ∠AED = 90°, AE = b∴ RtΔAED ≌ RtΔDMC(SAS)∴ ∠EAD = ∠MDC,DC = AD = c∵ ∠ADE + ∠ADC+ ∠MDC =180°, ∠ADE + ∠MDC = ∠ADE + ∠EAD = 90°∴ ∠ADC = 90°∴ 作AB∥DC,CB∥DA,则四边形ABCD是一个边长为c的正方形∵ ∠BAF + ∠FAD = ∠DAE + ∠FAD = 90°∴ ∠BAF=∠DAE。连结FB,在ΔABF和ΔADE中∵ AB =AD = c,AE = AF = b,∠BAF=∠DAE∴ ΔABF ≌ ΔADE(SAS)∴ ∠AFB = ∠AED = 90°,BF = DE = a∴ 点B、F、G、H在一条直线上在RtΔABF和RtΔBCG中,∵ AB = BC = c,BF = CG = a,∴ RtΔABF ≌ RtΔBCG (HL)∵c²=S₂+S₃+S₄+S₅, b²=S₁+S₂+S₆, a²=S₃+S₇,S₁=S₅=S₄=S₆+S₇,∴a²+b²=S₃+S₇+S₁+S₂+S₆=S₂+S₃+S₁+(S₆+S₇)=S₂+S₃+S₄+S₅ =c²∴ a²+b²=c²请点击输入图片描述
勾股定理的常见三种证明方法
证明方法:1、赵爽弦图《九章算术》中,赵爽描述此图:勾股各自乘,并之为玄实。开方除之,即玄。案玄图有可以勾股相乘为朱实二,倍之为朱实四。以勾股之差自相乘为中黄实。加差实亦成玄实。以差实减玄实,半其余。2、加菲尔德证法加菲尔德在证出此结论5年后,成为美国第20任总统,所以人们又称其为“总统证法”。3、加菲尔德证法变式该证明为加菲尔德证法的变式。如果将大正方形边长为c的小正方形沿对角线切开,则回到了加菲尔德证法。相反,若将上图中两个梯形拼在一起,就变为了此证明方法。4、青朱出入图青朱出入图,是东汉末年数学家刘徽根据“割补术”运用数形关系证明勾股定理的几何证明法,特色鲜明、通俗易懂。5、欧几里得证法在欧几里得的《几何原本》一书中给出勾股定理的以下证明。设△ABC为一直角三角形,其中A为直角。从A点画一直线至对边,使其垂直于对边。延长此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。公元前十一世纪,数学家商高(西周初年人)就提出“勾三、股四、弦五”。编写于公元前一世纪以前的《周髀算经》中记录着商高与周公的一段对话。商高说:“……故折矩,勾广三,股修四,经隅五。”意为:当直角三角形的两条直角边分别为3(勾)和4(股)时,径隅(弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”,根据该典故称勾股定理为商高定理。
勾股定理简单证明方法配图
证法一(邹元治证明):以a、b为直角边,以c为斜边做四个全等的三角形,按下图所示相拼,使A、E、B三点共线,B、F、C 三点共线,C、G、D三点共线。∵Rt△HAE≌Rt△EBF∴∠AHE=∠BEF∵∠AHE+∠AEH=90°∴∠BEF+∠AEH=90°∵A、E、B共线∴∠HEF=90°,四边形EFGH为正方形由于上图中的四个直角三角形全等,易得四边形ABCD为正方形∴正方形ABCD的面积=四个直角三角形的面积+正方形EFGH的面积∴(a+b)^2=4•(1/2)•ab+c^2,整理得a^2+b^2=c^2证法二(课本的证明):如上图所示两个边长为a+b的正方形面积相等,所以a^2+b^2+4•(1/2)•ab=c^2+4•(1/2)•ab,故a^2+b^2=c^2。证法三(赵爽弦图证明):以a、b为直角边,以c为斜边做四个全等的三角形,按下图所示相拼。易得四边形ABCD和四边形EFGH都是正方形∴正方形ABCD的面积=四个直角三角形的面积+正方形EFGH的面积∴c^2=4•(1/2)•ab+(b-a)^2 ,整理得a^2+b^2=c^2证法四(总统证明):如下图所示。易得△CDE为等腰直角三角形∴梯形ABCD的面积=两个直角三角形的面积+一个等腰三角形的面积∴1/2•(a+b)•(a+b)=2•(1/2)•ab+(1/2)•c^2,整理得a^2+b^2=c^2
勾股定理的证明方法最简单的6种
勾股定理的证明方法最简单的6种如下:一、正方形面积法这是一种很常见的证明方法,具体使用的是面积来证明的。以三角形的三边分别作三个正方形,发现两个较小的正方形面积之和等于较大的那个三角形。勾股定理得到证明。二、赵爽弦图赵爽弦图是指用四个斜边长为c,较长直角边为a,较短直角边为c的指教三角形组成一个正方形。在这个较大的正方形里还有一个较小的正方形。通过计算整体的面积算出勾股定理。三、梯形证明法梯形证明法也是一种很好的证明方法。即选两个一样的直角三角形一个横放,一个竖放,将高处的两个点相连。计算梯形的面积等于三个三角形的面积分别相加,从而证明勾股定理。四、青出朱入图青出朱入图是我国古代数学家刘徽提出的一种证明勾股定理的方法,是使用割补的方法进行的。就是将两个大小不等的正方形边长分别为a,b,然后通过割补的方法将它们拼成一个较大的正方形。五、毕达哥拉斯证明毕达哥拉斯的证明方法,也是证明面积相等,蛋是才去的方法是对三角形进行了移动。比如将原来的四个分散在四周的三角形,两两相组合,发现两个正方形的面积和两个长方形的面积相等。六、三角形相似证明利用三角形的相似性来证明勾股定理。就是将三角形从直角边作垂线,这单个三角形相似。以三边分别作正方形,因为边成比例,所以面积也具有成比例的关系。
勾股定理的证明图及说明
分类: 教育/科学 >> 科学技术
问题描述:
图画
解析:
勾股定理(又叫「毕氏定理」)说:「在一个直角三角形中,斜边边长的平方等于两条直角边边长平方之和。」据考证,人类对这条定理的认识,少说也超过 4000 年!又据记载,现时世上一共有超过 300 个对这定理的证明!
我觉得,证明多,固然是表示这个定理十分重要,因而有很多人对它作出研究;但证明多,同时令人眼花缭乱,亦未能够一针见血地反映出定理本身和证明中的数学意义。故此,我在这篇文章中,为大家选出了 7 个我认为重要的证明,和大家一起分析和欣赏这些证明的特色,与及认识它们的历史背境。
证明一
图一
在图一中,D ABC 为一直角三角形,其中 Ð A 为直角。我们在边 AB、BC 和 AC 之上分别画上三个正方形 ABFG、BCED 和 ACKH。过 A 点画一直线 AL 使其垂直于 DE 并交 DE 于 L,交 BC 于 M。不难证明,D FBC 全等于 D ABD(S.A.S.)。所以正方形 ABFG 的面积 = 2 ´ D FBC 的面积 = 2 ´ D ABD 的面积 = 长方形 BMLD 的面积。类似地,正方形 ACKH 的面积 = 长方形 MCEL 的面积。即正方形 BCED 的面积 = 正方形 ABFG 的面积 + 正方形 ACKH 的面积,亦即是 AB2 + AC2 = BC2。由此证实了勾股定理。
这个证明巧妙地运用了全等三角形和三角形面积与长方形面积的关系来进行。不单如此,它更具体地解释了,「两条直角边边长平方之和」的几何意义,这就是以 ML 将正方形分成 BMLD 和 MCEL 的两个部分!
这个证明的另一个重要意义,是在于它的出处。这个证明是出自古希腊大数学欧几里得之手。
欧几里得(Euclid of Alexandria)约生于公元前 325 年,卒于约公元前 265 年。他曾经在古希腊的文化中心亚历山大城工作,并完成了著作《几何原本》。《几何原本》是一部划时代的著作,它收集了过去人类对数学的知识,并利用公理法建立起演绎体系,对后世数学发展产生深远的影响。而书中的第一卷命题 47,就记载著以上的一个对勾股定理的证明。
证明二
图二
图二中,我们将4个大小相同的直角三角形放在一个大正方形之内,留意大正方形中间的浅黄色部分,亦都是一个正方形。设直角三角形的斜边长度为 c,其余两边的长度为 a 和 b,则由于大正方形的面积应该等于 4 个直角三角形和中间浅黄色正方形的面积之和,所以我们有
(a + b)2 = 4(1/2 ab) + c2
展开得 a2 + 2ab + b2 = 2ab + c2
化简得 a2 + b2 = c2
由此得知勾股定理成立。
证明二可以算是一个非常直接了当的证明。最有趣的是,如果我们将图中的直角三角形翻转,拼成以下的图三,我们依然可以利用相类似的手法去证明勾股定理,方法如下:
图三
由面积计算可得 c2 = 4(1/2 ab) + (b - a)2
展开得 = 2ab + b2 - 2ab + a2
化简得 c2 = a2 + b2(定理得证)
图三的另一个重要意义是,这证明最先是由一个中国人提出的!据记载,这是出自三国时代(即约公元 3 世纪的时候)吴国的赵爽。赵爽为《周髀算经》作注释时,在书中加入了一幅他称为「勾股圆方图」(或「弦图」)的插图,亦即是上面图三的图形了。
证明三
图四
图四一共画出了两个绿色的全等的直角三角形和一个浅黄色的等腰直角三角形。不难看出,整个图就变成一个梯形。利用梯形面积公式,我们得到∶
1/2(a + b)(b + a) = 2(1/2 ab) + 1/2 c2
展开得 1/2 a2 + ab + 1/2 b2 = ab + 1/2 c2
化简得 a2 + b2 = c2(定理得证)
有一些书本对证明三十分推祟,这是由于这个证明是出自一位美国总统之手!
在 1881 年,加菲(James A. Garfield; 1831 - 1881)当选成为美国第 20 任总统,可惜在当选后 5 个月,就遭行刺身亡。至于勾股定理的有关证明,是他在 1876 年提出的。
我个人觉得证明三并没有甚么优胜之处,它其实和证明二一样,只不过它将证明二中的图形切开一半罢了!更何况,我不觉得梯形面积公式比正方形面积公式简单!
又,如果从一个老师的角度来看,证明二和证明三都有一个共同的缺点,它就是需要到恒等式 (a ± b)2 = a2 ± 2ab + b2 了。虽然这个恒等式一般都包括在中二的课程之中,但有很多学生都未能完全掌握,由于以上两个证明都使用了它,往往在教学上会出现学生不明白和跟不上等问题。
证明四
(a) (b) (c)
图五
证明四是这样做的:如图五(a),我们先画一个直角三角形,然后在最短的直角边旁向三角形那一边加上一个正方形,为了清楚起见,以红色表示。又在另一条直角边下面加上另一个正方形,以蓝色表示。接着,以斜边的长度画一个正方形,如图五(b)。我们打算证明红色和蓝色两个正方形面积之和,刚好等于以斜边画出来的正方形面积。
留意在图五(b)中,当加入斜边的正方形后,红色和蓝色有部分的地方超出了斜边正方形的范围。现在我将超出范围的部分分别以黄色、紫色和绿色表示出来。同时,在斜边正方形内,却有一些部分未曾填上颜色。现在依照图五(c)的方法,将超出范围的三角形,移入未有填色的地方。我们发现,超出范围的部分刚好填满未曾填色的地方!由此我们发现,图五(a)中,红色和蓝色两部分面积之和,必定等于图五(c)中斜边正方形的面积。由此,我们就证实了勾股定理。
这个证明是由三国时代魏国的数学家刘徽所提出的。在魏景元四年(即公元 263 年),刘徽为古籍《九章算术》作注释。在注释中,他画了一幅像图五(b)中的图形来证明勾股定理。由于他在图中以「青出」、「朱出」表示黄、紫、绿三个部分,又以「青入」、「朱入」解释如何将斜边正方形的空白部分填满,所以后世数学家都称这图为「青朱入出图」。亦有人用「出入相补」这一词来表示这个证明的原理。
在历史上,以「出入相补」的原理证明勾股定理的,不只刘徽一人,例如在印度、在 *** 世界、甚至乎在欧洲,都有出现过类似的证明,只不过他们所绘的图,在外表上,或许会和刘徽的图有些少分别。下面的图六,就是将图五(b)和图五(c)两图结合出来的。留意我经已将小正方形重新画在三角形的外面。看一看图六,我们曾经见过类似的图形吗?
图六
其实图六不就是图一吗?它只不过是将图一从另一个角度画出罢了。当然,当中分割正方形的方法就有所不同。
顺带一提,证明四比之前的证明有一个很明显的分别,证明四没有计算的部分,整个证明就是单靠移动几块图形而得出。我不知道大家是否接受这些没有任何计算步骤的「证明」,不过,我自己就非常喜欢这些「无字证明」了。
图七
在多种「无字证明」中,我最喜欢的有两个。图七是其中之一。做法是将一条垂直线和一条水平线,将较大直角边的正方形分成 4 分。之后依照图七中的颜色,将两个直角边的正方形填入斜边正方形之中,便可完成定理的证明。
事实上,以类似的「拼图」方式所做的证明非常之多,但在这里就未有打算将它们一一尽录了。
另一个「无字证明」,可以算是最巧妙和最简单的,方法如下:
证明五
(a) (b)
图八
图八(a)和图二一样,都是在一个大正方形中,放置了4个直角三角形。留意图中浅黄色部分的面积等于 c2。现在我们将图八(a)中的 4 个直角三角形移位,成为图八(b)。明显,图八(b)中两个浅黄色正方形的面积之和应该是 a2 + b2。但由于(a)、(b)两图中的大正方形不变,4 个直角三角形亦相等,所以余下两个浅黄色部的面积亦应该相等,因此我们就得到 a2 + b2 = c2,亦即是证明了勾股定理。
对于这个证明的出处,有很多说法:有人说是出自中国古代的数学书;有人相信当年毕达哥拉斯就是做出了这个证明,因而宰杀了一百头牛来庆祝。总之,我觉得这是众多证明之中,最简单和最快的一个证明了。
不要看轻这个证明,它其实包含着另一个意义,并不是每一个人都容易察觉的。我现在将上面两个图「压扁」,成为图九:
(a) (b)
图九
图九(a)中间的浅黄色部分是一个平行四边形,它的面积可以用以下算式求得:mn sin(a + b),其中 m 和 n 分别是两个直角三角形斜边的长度。而图九(b)中的浅黄色部分是两个长方形,其面积之和是:(m cos a)(n sin b) + (m sin a)(n cos b)。正如上面一样,(a)、(b)两图浅黄色部分的面积是相等的,所以将两式结合并消去共有的倍数,我们得:sin(a + b) = sin a cos b + sin b cos a,这就是三角学中最重要的复角公式!原来勾股定理和这条复角公式是来自相同的证明的!
在证明二中,当介绍完展开 (a + b)2 的方法之后,我提出了赵爽的「弦图」,这是一个展开 (a - b)2 的方法。而证明五亦有一个相似的情况,在这里,我们除了一个类似 (a + b) 的「无字证明」外,我们亦有一个类似 (a - b) 的「无字证明」。这方法是由印度数学家婆什迦罗(Bhaskara; 1114 - 1185)提出的,见图十。
(a) (b)
图十
证明六
图十一
图十一中, 我们将中间的直角三角形 ABC 以 CD 分成两部分,其中 Ð C 为直角,D 位于 AB 之上并且 CD ^ AB。设 a = CB,b = AC,c = AB,x = BD,y = AD。留意图中的三个三角形都是互相相似的,并且 D DBC ~ D CBA ~ D DCA,所以
= 和 =
由此得 a2 = cx 和 b2 = cy
将两式结合,得 a2 + b2 = cx + cy = c(x + y) = c2。定理得证。
证明六可以说是很特别的,因为它是本文所有证明中,唯一一个证明没有使用到面积的概念。我相信在一些旧版的教科书中,也曾使用过证明六作为勾股定理的证明。不过由于这个证明需要相似三角形的概念,而且又要将两个三角形翻来覆去,相当复杂,到今天已很少教科书采用,似乎已被人们日渐淡忘了!
可是,如果大家细心地想想,又会发现这个证明其实和证明一(即欧几里得的证明)没有分别!虽然这个证明没有提及面积,但 a2 = cx 其实就是表示 BC 上正方形的面积等于由 AB 和 BD 两边所组成的长方形的面积,这亦即是图一中黄色的部分。类似地,b2 = cy 亦即是图一中深绿色的部分。由此看来,两个证明都是依据相同的原理做出来的!
证明七
(a) (b) (c)
图十二
在图十二(a)中,我们暂时未知道三个正方形面积之间有甚么直接的关系,但由于两个相似图形面积之比等于它们对应边之比的平方,而任何正方形都相似,所以我们知道面积 I : 面积 II : 面积 III = a2 : b2 : c2。
不过,细心地想想就会发现,上面的推论中,「正方形」的要求是多余的,其实只要是一个相似的图形,例如图十二(b)中的半圆,或者是图十二(c)中的古怪形状,只要它们互相相似,那么面积 I : 面积 II : 面积 III 就必等于 a2 : b2 : c2了!
在芸芸众多的相似图形中,最有用的,莫过于与原本三角形相似的直角三角形了。
(a) (b)
图十三
在图十三(a)中,我在中间的直角三角形三边上分别画上三个和中间三角形相似的直角三角形。留意:第 III 部分其实和原本三角形一样大,所以面积亦相等;如果我们从三角形直角的顶点引一条垂直线至斜边,将中间的三角形分成两分,那么我们会发现图十三(a)的面积 I 刚好等于中间三角形左边的面积,而面积 II 亦刚好等于右边的面积。由图十三(b)可以知道:面积 I + 面积 II = 面积 III。与此同时,由于面积 I : 面积 II : 面积 III = a2 : b2 : c2,所以 a2 + b2 = c2。
七个证明之中,我认为这一个的布局最为巧妙,所用的数学技巧亦精彩。可惜对一个初中学生而言,这个证明就比较难掌握了。
我不太清楚这个证明的出处。我第一次认识这个证明,是在大学时候,一位同学从图书馆看到这个证明后告诉我的。由于印象深刻,所以到了今天仍依然记忆犹新。
欧几里得《几何原本》的第六卷命题 31 是这样写的:「在直角三角形中,对直角的边上所作的图形等于夹直角边上所作与前图相似且有相似位置的二图形之和。」我估计,相信想出证明七的人,应该曾经参考过这一个命题。
参考资料:staff.ccss.edu/jckleung/jiao_xue/py_thm/py_thm
怎样用图形证明勾股定理
在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个相等的直角三角形再加上中间的那个小正方形组成的.每个直角三角形的面积为ab/2;中间懂得小正方形边长为b-a,则面积为(b-a)2.于是便可得如下的式子: 4×(ab/2)+(b-a)2=c2 化简后便可得: a2+b2=c2 亦即: c=(a2+b2)(1/2) 马到成功!