原子能级是怎么划分的呢?
原子能级1、2、3、4分别对应s,p,d,f ,此外还有:g,h,i,j,k……,紧接后面就是英文26个字母。能级取决于原子的电子组态,此外还取决于原子内相互作用的耦合类型,在LS耦合情形下,总轨道角动量、总自旋和总角动量的量子数L、S、J都是好量子数,能级标记为一定的符号。例如:氦原子某能级符号表示为1s2p3p2,其中左边部分1s2p为电子组态,大写拉丁字母分别对应于L=0、1、2、3、…的拉丁字母S、P、D、F…左上角的数值为2S+1,表示多重态的重数,右下角的数值是J值。在磁场中原子磁矩与磁场的相互作用导致能级分裂,还须用相应的磁量子数分别予以标记。扩展资料对于复杂的原子,组态相互作用(configure interaction,CI)在原子结构计算中起了非常重要的作用,但在实际计算中,不可能包括所有可能的组态相互作用,通常通过控制电子激发数目来选取组态。在考虑组态相互作用时,只包含了最多只能有两个电子向高能量轨道激发所形成的组态.在用CI方法求解波函数时,在逐步增加组态的过程中如果能级前后的误差小于10-5时,就认为CI已满足精度要求,就不再增加组态了。事实上,Debye模型并不需要高温条件,只要r值足够大,温度不需要太高,体系也满足Debye近似。但是,当等离子体环境不满足Debve近似时,等离子体屏蔽效应就需要其他的模型来引入,比如离子球模型。一般的高温等离子体都满足此条件。在上面的推导中,只引入了静态屏蔽效应,而忽略了动态屏蔽效应。若要更精确地计算等离子体屏蔽效应对原子结构的影响,就要把上面的各个因素都考虑进来。参考资料来源:百度百科-原子能级
分子能级和原子能级有何异同,分子能级怎样产生
分子是化合物,原子是原子核和核外电子,其能量原子能巨大,如核裂变,分子相对稳定。分子内部的运动有电子运动、分子振动和分子转动,它们的能量都是量子化的,故可形成电子能级、振动能级和转动能级。分子能级指的是分子内部各种运动状态所形成的能级结构。分子内部各种运动状态所形成的能级结构。分子内部的运动有电子运动、分子振动和分子转动,它们的能量都是量子化的,故可形成电子能级、振动能级和转动能级。分子的电子能级为10电子伏特(eV)量级,与原子的能级差不多;分子的振动能级大约是电子能级的0.1倍,分子的转动能级大约是电子能级的m/M倍,其中m是电子的质量,M是典型分子的质量。由于典型分子的质量比电子质量要大数千倍至万倍,从而分子振动能级为0.1电子伏特(eV),转动能级为0.001eV,因此分子的能级比原子的能级复杂,由此决定分子比原子具有丰富得多的光谱。
原子能级除了spdf还有什么
原子能级1、2、3、4分别对应s,p,d,f ,此外还有:g,h,i,j,k??,紧接后面就是英文26个字母。能级取决于原子的电子组态,此外还取决于原子内相互作用的耦合类型,在LS耦合情形下,总轨道角动量、总自旋和总角动量的量子数L、S、J都是好量子数,能级标记为一定的符号。例如:氦原子某能级符号表示为1s2p3p2,其中左边部分1s2p为电子组态,大写拉丁字母分别对应于L=0、1、2、3、?的拉丁字母S、P、D、F?左上角的数值为2S+1,表示多重态的重数,右下角的数值是J值。在磁场中原子磁矩与磁场的相互作用导致能级分裂,还须用相应的磁量子数分别予以标记。扩展资料对于复杂的原子,组态相互作用(configure interaction,CI)在原子结构计算中起了非常重要的作用,但在实际计算中,不可能包括所有可能的组态相互作用,通常通过控制电子激发数目来选取组态。在考虑组态相互作用时,只包含了最多只能有两个电子向高能量轨道激发所形成的组态.在用CI方法求解波函数时,在逐步增加组态的过程中如果能级前后的误差小于10-5时,就认为CI已满足精度要求,就不再增加组态了。事实上,Debye模型并不需要高温条件,只要r值足够大,温度不需要太高,体系也满足Debye近似。但是,当等离子体环境不满足Debve近似时,等离子体屏蔽效应就需要其他的模型来引入,比如离子球模型。一般的高温等离子体都满足此条件。在上面的推导中,只引入了静态屏蔽效应,而忽略了动态屏蔽效应。若要更精确地计算等离子体屏蔽效应对原子结构的影响,就要把上面的各个因素都考虑进来。参考资料来源:百度百科-原子能级
原子能级的spdf什么意思 为什么用这几个字母 完全没规律啊
锐线系(sharp)nS→2P主线系(principal)nP→2S漫线系(diffuse)nD→2P基线系(fundamental)nF→3D这种记法来源于光谱学的术语。光谱分析是研究原子分子结构的重要手段。以上线系分别是从轨道量子数l=0,1,2,3的轨道跃迁产生的,故以首字母s,p,d,f来命名这些轨道。由于这个新概念不同于古典物理学中的轨道想法,1932年美国化学家罗伯特·马利肯提出以“轨道”(orbital)取代“轨道”(orbit)一词。原子轨道是单一原子的波函数,使用时必须代入n(主量子数)、l(角量子数)、m(磁量子数)三个量子化参数,分别决定电子的能量、角动量和方位,三者统称为量子数。每个轨道都有一组不同的量子数,且最多可容纳两个电子。S轨道、p轨道、d轨道、f轨道则分别代表角量子数l=0, 1, 2, 3的轨道,表现出如右图的轨道形状及电子排布。它的名称源于对其原子光谱特征谱线外观的描述,分为锐系光谱(sharp)、主系光谱(principal)、漫系光谱(diffuse)、基系光谱(fundamental),其余则依字母序命名(跳过 j)。在原子物理学的运算中,复杂的电子函数常被简化成较容易的原子轨道函数组合。虽然多电子原子的电子并不能以“一或二个电子之原子轨道”的理想图像解释。它的波函数仍可以分解成原子轨道函数组合,以原子轨道理论进行分析;就像在某种意义上,由多电子原子组成的电子云在一定程度上仍是以原子轨道“构成”,每个原子轨道内只含一或二个电子。扩展资料能级分裂:在多电子原子中,当价电子进入原子实内部时,内层电子对原子核的屏蔽作用减小,相当于原子实的有效电荷数增大,也就是说电子所受到的引力增大,原子的体系能量下降,所以由此可以容易得出。当主量子数n相同时,不同的轨道角动量数l所对应的原子轨道形状不一样,即当价电子处于不同的轨道时,原子的能量降低的幅度也不一样,轨道贯穿的效果越明显,能量降低的幅度越大。s,p,d,f能级的能量有大小之分,这种现象称为“能级分裂”,屏蔽效应产生的主要原因是核外电子间静电力的相互排斥,减弱了原子核对电子的吸引:s能级的电子排斥p能级的电子,把p电子“推”离原子核,p、d、f之间也有类似情况总的屏蔽顺序为:ns>np>nd>nf因为离核越远,能量越大,所以能量顺序与屏蔽顺序成反比能量顺序为:ns<np<nd<nf参考资料来源:百度百科--原子轨道
使原子核与电子结合形成原子。强相互作用b) 弱相互作用c)电磁相互作用d)万
A、使原子核内质子、中子保持在一起的作用是核力,不是电磁作用,是强相互作用.故A错误.
B、在天然放射现象中,比如β衰变中起作用是弱相互作用.故B正确.
C、万有引力和电磁相互作用相互作用的距离很长,是远程力,而强相互作用和弱相互作用相互作用的距离很小,是近程力.故C正确.
D、地球绕太阳旋转而不离去受到对地球巨大的万有引力才不离去.故D正确.
故选BCD
原子的能级是如何排列的?
原子能级1、2、3、4分别对应s,p,d,f ,此外还有:g,h,i,j,k……,紧接后面就是英文26个字母。能级取决于原子的电子组态,此外还取决于原子内相互作用的耦合类型,在LS耦合情形下,总轨道角动量、总自旋和总角动量的量子数L、S、J都是好量子数,能级标记为一定的符号。例如:氦原子某能级符号表示为1s2p3p2,其中左边部分1s2p为电子组态,大写拉丁字母分别对应于L=0、1、2、3、…的拉丁字母S、P、D、F…左上角的数值为2S+1,表示多重态的重数,右下角的数值是J值。在磁场中原子磁矩与磁场的相互作用导致能级分裂,还须用相应的磁量子数分别予以标记。扩展资料对于复杂的原子,组态相互作用(configure interaction,CI)在原子结构计算中起了非常重要的作用,但在实际计算中,不可能包括所有可能的组态相互作用,通常通过控制电子激发数目来选取组态。在考虑组态相互作用时,只包含了最多只能有两个电子向高能量轨道激发所形成的组态.在用CI方法求解波函数时,在逐步增加组态的过程中如果能级前后的误差小于10-5时,就认为CI已满足精度要求,就不再增加组态了。事实上,Debye模型并不需要高温条件,只要r值足够大,温度不需要太高,体系也满足Debye近似。但是,当等离子体环境不满足Debve近似时,等离子体屏蔽效应就需要其他的模型来引入,比如离子球模型。一般的高温等离子体都满足此条件。在上面的推导中,只引入了静态屏蔽效应,而忽略了动态屏蔽效应。若要更精确地计算等离子体屏蔽效应对原子结构的影响,就要把上面的各个因素都考虑进来。参考资料来源:百度百科-原子能级
原子轨道有哪些能级组?
美国化学家Pauling经过计算,将原子轨道分为七个能级组:第一组:1s第二组:2s2p第三组:3s3p第四组:4s3d4p第五组:5s4d5p第六组:6s4f5d6p第七组:7s5f6d7p扩展资料:原子轨道近似能级图的特点:1、能级能量由低到高。2、组与组之间能量差大,组内各轨道间能量差小,随n逐渐增大,这两种能量差逐渐减小。3、第一能级组只有1s一个轨道,其余均有两个或两个以上,且以ns开始np结束。4、能级组与元素周期相对应。参考资料来源:百度百科-原子轨道近似能级图
原子轨道能级是什么意思?
spdf轨道排布规律是:1、泡利不相容原理:每个轨道最多只能容纳两个电子,且自旋相反配对。2、能量最低原理:电子尽可能占据能量最低的轨道。3、Hund规则:简并轨道(能级相同的轨道)只有被电子逐一自旋平行地占据后,才能容纳第二个电子。简介对于某元素原子的核外电子排布情况,先确定该原子的核外电子数(即原子序数、质子数、核电荷数)。如24号元素铬,其原子核外总共有24个电子。然后根据泡利不相容原理,将这24个电子从能量最低的1s亚层,依次往能量较高的亚层上排布。只有前面的亚层填满后,才去填充后面的亚层。每一个亚层上最多能够排布的电子数为:s亚层2个,p亚层6个,d亚层10个,f亚层14个。
原子的能级顺序怎样?
公式,E=E0/N^2各能级能量高低顺序:①相同n而不同能级的能量高低顺序为:ns<np<nd<nf,②n不同时的能量高低:2s<3s<4s 2p<3p<4p;③不同层不同能级ns<(n-2)f<(n-1)d<np,绝大多数基态原子核外电子的排布都遵循下列顺序:1s、2s、2p、3s、3p、4s、3d、4p、5s、4d、5p、6s、4f。能级的激发性质 从原子核的衰变、反应性质和核结构理论可判定某一能级的激发性质。典型的激发有两类:一类是单粒子激发(或单空穴激发),例如在某些奇A核中,奇核子从一个单粒子态跃迁到另一个单粒子态。另一类是集体性质的激发,它是由许多单核子激发的相干叠加而成的激发。以上内容参考:百度百科-能级
原子核中的能级是如何排布的?
公式,E=E0/N^2。各能级能量高低顺序:①相同n而不同能级的能量高低顺序为:ns<np<nd<nf。②n不同时的能量高低:2s<3s<4s 2p<3p<4p。③不同层不同能级ns<(n-2)f<(n-1)d<np,绝大多数基态原子核外电子的排布都遵循下列顺序:1s、2s、2p、3s、3p、4s、3d、4p、5s、4d、5p、6s、4f。能级的标定:原子核能级的性质决定于核子间的相互作用,后者主要包括强相互作用(即核力)及电磁相互作用。在一个多体系统中,粒子间的相互作用所具有的不变性能为这个多体系统提供了好的量子数。由于核力和电磁力都具有转动不变性及空间反射不变性,所以角动量I和宇称π都是原子核的好量子数(即守恒量量子数),它们是除能量以外标定能级的最基本的量子数。此外,核力还较好地满足同位旋空间转动不变性,但电磁力不具有这种不变性。所以在后者所起的作用不大的情况下,例如在轻核中,同位旋T仍是一个近似的好量子数(见原子核),用它来标定能级是有意义的。
基态原子和激发态原子怎么样区别?
想了解基态原子和激发态原子有什么区别首先要了解什么是基态原子?
现代物质结构理论证实原子的电子排布遵循构造原理,能使整个原子的能量处于最低状态,简称能量最低原理。处于最低能量的原子叫做基态原子。
基态原子的电子吸收能量后,电子会跃迁到较高能级,变成激发态原子;
基态原子吸收能量转化为激发态原子,反之,如果没有能量继续维持,激发态原子将转化为基态原子,发生电子跃迁,进而放出以为光的形式的能量。
原子平常是处于基态还是激发态呢?
一般是都有可能的 但是以基态为主
原子在各能态【基态、激发态,以及各激发态之间】的分布的比率与能态之间的能量差和环境能量有关
根据boltzmann公式可以确定两个能级之间的粒子分布比例:
N(A)/N(B) = g(A)exp【-e(A)/kT】/g(B)exp【-e(B)/kT】 N(i)指相应能级的粒子数 g(i)是简并度可以无视就看成1好了= = ,e(i)是相应能级的能量 k是常数 T是环境温度
假设A是基态 B是激发态 那么由这个公式可以确定粒子在两个能级之间的分布 其分布与环境温度T和两个能级能量e(i)有关 exp是以e为底的指数函数 由于是指数函数 可以得出分布与e(i)的具体值无关 只与两者之差有关(其实事实上能够确定的也就是两者之差)
也就是说 通常粒子可以处于基态或者激发态 平衡态下大量粒子在两个能态间存在恒定的分布比例 影响因素是环境能量和两个能级的能量差