螺线

时间:2024-04-25 11:35:12编辑:揭秘君

【螺线】的意思是什么?【螺线】是什么意思?

【螺线】的意思是什么?【螺线】是什么意思? 【螺线】的意思是: 在平面极坐标系中,设动点的极坐标为(ρ,θ),当极径ρ随极角θ的增加而增加(或减小)时,动点的轨迹。最常见的螺线有阿基米德螺线、对数螺线、双曲螺线等。★「螺线」在《汉语辞海》的解释 螺线是什么意思 在平面极坐标系中,设动点的极坐标为(ρ,θ),当极径ρ随极角θ的增加而增加(或减小)时,动点的轨迹。最常见的螺线有阿基米德螺线、对数螺线、双曲螺线等。 ★「螺线」在《汉语辞海》的解释 螺线的英语单词1.spiro2.solenoid3.thread4.spiral cord 用螺线造句 1.Leak Det Pmp Sol Ckt(破漏检测泵电磁螺线管Ckt) 2.阿基米德螺线 3.将DRB置为电压表模式,测试右后衰减螺线管控制CKT。 4.螺线管或启动器马达故障。 5.乔伯斯被APPLE公司慢耗损的螺线所吸引,他甚至为这家他帮助创立的电脑公付出了较大的努力。 6.使DRB处于电压计模式,探查左后衰变电磁螺线管控制电路。 7.试证明:我们有正弦螺线?#?cosnθ(n 是有理数)的下列特殊情况。 8.无把手开口一体化螺线管操作器,固定计量旁路,不需要外加流量调节装置,保证节水效果 9.修理左后衰变螺线管螺线管控制电路短接地线。* 10.用阿基米德螺线能成功地解决化圆为方的问题,方法很简单。 11.右旋的软体动物的螺形外壳上的螺线顺时针螺旋即顶点向上,面对观察者时,螺线向右旋转> 词条推荐


螺线的解释螺线的解释是什么

螺线的词语解释是:螺线luóxiàn。(1)螺旋体的一圈或线圈。螺线的词语解释是:螺线luóxiàn。(1)螺旋体的一圈或线圈。结构是:螺(左右结构)线(左右结构)。拼音是:luóxiàn。注音是:ㄌㄨㄛ_ㄒ一ㄢ_。螺线的具体解释是什么呢,我们通过以下几个方面为您介绍:一、网络解释【点此查看计划详细内容】螺线螺线(Spiral),也称定倾曲线,指任何一种围绕一个中心点或一条轴旋转,同时又逐渐远离的动点的轨迹。例如螺旋线(非平面曲线)及常用的平面螺线、阿基米德螺线、对数螺线、双曲螺线等。在力学、工程技术中,螺线有广泛的应用。关于螺线的单词solenoid关于螺线的成语_丝麻线吹大法螺拉长线一针一线断线珍珠引线穿针关于螺线的词语不绝若线线断风筝断线珍珠撞钟吹螺拉长线_丝麻线细针密线断线偶戏穿针走线吹大法螺点此查看更多关于螺线的详细信息


【螺旋线】的意思是什么?【螺旋线】是什么意思?

【螺旋线】的意思是什么?【螺旋线】是什么意思? 【螺旋线】的意思是: 又称「柱面螺旋线」。一种空间曲线。其特征是曲线上每一点的切线与固定直线(轴)交定角。当动点在一圆柱面上以等角速度作转动,同时又以常速沿轴向作匀速直线运动时的轨迹。有右旋和左旋之分。★「螺旋线」在《汉语辞海》的解释 螺旋线是什么意思 又称「柱面螺旋线」。一种空间曲线。其特征是曲线上每一点的切线与固定直线(轴)交定角。当动点在一圆柱面上以等角速度作转动,同时又以常速沿轴向作匀速直线运动时的轨迹。有右旋和左旋之分。 ★「螺旋线」在《汉语辞海》的解释 用螺旋线造句 1.换句话说,这样一个分子的图象很像一条导电的螺旋线。 2.建立了砂轮的球基渐开螺旋面方程和分度球面螺旋线方程,给出螺旋运动参数、螺旋线导程。 3.近似螺旋形的,近似螺旋线的 4.卷曲的(同心环或螺旋线)。 5.每阶二重螺旋线都是一个堿基,由两种核酸组成。 6.盘绕绕成同心环或螺旋线 7.用复合函数的形式,导出导程呈线性变化的圆柱螺旋线的参考方程。 8.在地核中,科氏力使涌升的流体沿着像开酒瓶器的螺旋路线上升,彷佛顺着弹簧的螺旋线圈移动。 9.在这种表示法中,晶体应相当于许多螺旋线的平行排列。 10.这些银圆片围着中心螺旋线排成一个螺旋体。 11.作为一家专业的供货商为您提供高质量的折边工作,轮胎成型、装批量生产,门,螺旋线、旋。>


等角螺线又叫( )

等角螺线又叫对数螺线。等角螺线是由笛卡儿在1683年发现的。雅各布.伯努利后来重新研究之。他发现了等角螺线的许多特性,如等角螺线经过各种适当的变换之后仍是等角螺线。他十分惊叹和欣赏这曲线的特性,故要求死后将之刻在自己的墓碑上,并附词“纵使改变,依然故我”(eadem mutata resurgo)。可惜雕刻师误将阿基米德螺线刻了上去。等角螺线的臂的距离以几何级数递增。设L为穿过原点的任意直线,则L与等角螺线的相交的角永远相等(故其名),而此值为cot-1 lnb。设C为以原点为圆心的任意圆,则C与等角螺线的相交的角永远相等,而此值为tan-1 lnb,名为倾斜度。等角螺线是自我相似的;这即是说,等角螺线经放大后可与原图完全相同。等角螺线的渐屈线和垂足线都是等角螺线。从原点到等角螺线的任意点上的长度有限,但由那点出发沿等角螺线走到原点却需绕原点转无限次。这是由Torricelli发现的。

对数螺线是什么

对数螺线是一根无止尽的螺线,它永远向着极绕,越绕越靠近极,但又永远不能到达极.据说,使用最精密的仪器也看不到一根完全的对数螺线,这种图形只存在科学家的假想中.  螺线特别是对数螺线的美学意义可以用指数的形式来表达:  ρ=αe^(kφ)   其中,α和k为常数,φ是极角,ρ是极径,e是自然对数的底.为了讨论方便,我们把e或由e经过一定变换和复合的形式定义为“自然律”.因此,“自然律”的核心是e,其值为2.71828……,是一个无限不循环小数.  对数螺线在自然界中最为普遍存在,其它螺线也与对数螺线有一定的关系,不过目前我们仍未找到螺线的通式.


对数螺线是什么

详见http://baike.baidu.com/view/795.htm

对数螺线是一根无止尽的螺线,它永远向着极绕,越绕越靠近极,但又永远不能到达极。据说,使用最精密的仪器也看不到一根完全的对数螺线,这种图形只存在科学家的假想中。   螺线特别是对数螺线的美学意义可以用指数的形式来表达:   ρ=αe^(kφ)   其中,α和k为常数,φ是极角,ρ是极径,e是自然对数的底。为了讨论方便,我们把e或由e经过一定变换和复合的形式定义为“自然律”。因此,“自然律”的核心是e,其值为2.71828……,是一个无限不循环小数。   对数螺线在自然界中最为普遍存在,其它螺线也与对数螺线有一定的关系,不过目前我们仍未找到螺线的通式。


谁发明了对数螺旋线

早在2000多年以前,古希腊数学家阿基米德就对螺旋线进行了研究。公元1638年,著名数学家笛卡尔首先描述了对数螺旋线,并列出了螺旋线的解析式。这种螺旋线有很多特点,其中最突出的一点则是它的形状,无论你把它放大或缩小都不会改变。就像我们不能把角放大或缩小一样。

当我们观察着园蛛,尤其是丝光蛛和条纹蛛的网时,我们会发现它的网并不是杂乱无章的,那些辐排得很均匀,每对相邻的辐所交成的角都是相等的;虽然辐的数目对不同的蜘蛛而言是各不相同的,可这个规律适用于各种蜘蛛。

我们已经知道,蜘蛛织网的方式很特别,它把网分成若干等份,同一类蜘蛛所分的份数是相同的。当它安置辐的时候,我们只见它向各个方向乱跳,似乎毫无规则,但是这种无规则的工作的结果是造成一个规则而美丽的网,像教堂中的玫瑰窗一般。即使他用了圆规、尺子之类的工具。没有一个设计家能画出一个比这更规范的网来。

我们可以看到,在同一个扇形里,所有的弦,也就是那构成螺旋形线圈的横辐,都是互相平行的,并且越靠近中心,这种弦之间的距离就越远。每一根弦和支持它的两根辐交成四个角,一边的两个是钝角,另一边的两个是锐角。而同一扇形中的弦和辐所交成的钝角和锐角正好各自相等——因为这些弦都是平行的。

不但如此,凭我们的观察,这些相等的锐角和钝角,又和别的扇形中的锐角和钝角分别相等,所以,总的看来,这螺旋形的线圈包括一组组的横档以及一组组和辐交成相等的角。

这种特性使我们想到数学家们所称的“对数螺线”。


什么是对数螺线?是谁发明的?

对数螺线是一根无止尽的螺线,它永远向着极绕,越绕越靠近极,但又永远不能到达极。据说,使用最精密的仪器也看不到一根完全的对数螺线,这种图形只存在科学家的假想中。螺线特别是对数螺线的美学意义可以用指数的形式来表达:φkρ=αe其中,α和k为常数,φ是极角,ρ是极径,e是自然对数的底。为了讨论方便,我们把e或由e经过一定变换和复合的形式定义为“自然律”。因此,“自然律”的核心是e,其值为2.71828……,是一个无限循环数。对数螺线在自然界中最为普遍存在,其它螺线也与对数螺线有一定的关系,不过目前我们仍未找到螺线的通式。对数螺线是1638年经笛卡尔引进的,后来瑞士数学家雅各·伯努利曾详细研究过它,发现对数螺线的渐屈线和渐伸线仍是对数螺线,极点在对数螺线各点的切线仍是对数螺线,等等。伯努利对这些有趣的性质惊叹不止,竟留下遗嘱要将对数螺线画在自己的墓碑上。 查看原帖>>


阿基米德螺线详细资料大全

阿基米德螺线(亦称等速螺线),得名于公元前三世纪希腊数学家阿基米德。阿基米德螺线是一个点匀速离开一个固定点的同时又以固定的角速度绕该固定点转动而产生的轨迹。阿基米德在其著作《螺旋线》中对此作了描述。 基本介绍 中文名 :阿基米德螺线 外文名 :Archimedean spiral 别称 :阿基米德曲线 提出者 :阿基米德 提出时间 :公元前三世纪 套用学科 :数学 方程式,套用,最初套用:螺旋扬水器,工程套用:阿基米德螺旋泵,生活套用:蚊香的几何特征,相关发现,阿基米德螺线的画法,自然界中螺线广泛存在的原因,更多信息, 方程式 阿基米德螺线的极坐标方程式为: 其中 a 和 b 均为实数。当 时, a 为起点到极坐标原点的距离。 , b 为螺旋线每增加单位角度r随之对应增加的数值。改变参数 a 相当于旋转螺线,而参数 b 则控制相邻两条曲线之间的距离。 阿基米德螺线的平面笛卡尔坐标方程式为: 通用的从极坐标系到笛卡尔坐标系的变换方法: , 通用的从笛卡尔坐标系到极坐标系的变换方法: 根据最新的研究表明,阿基米德螺旋公式可以用指定的半径r,圆周速度v,直线运动速度w来表示,公式为 根据这一公式,当圆周速度与直线速度同时增大一倍时,阿基米德螺旋的形状是不会发生变化的,因此,阿基米德螺旋属于 等速度比 螺旋,同时由于它在每个旋转周期内是等距离外扩的,故又可称它为 等距螺旋 。 阿基米德螺旋的切线角度没有特定的规律,通过数学软体,按照求导数的方法,每隔45°做切线,会得到如右图的效果。 套用 最初套用:螺旋扬水器 为解决用尼罗河水灌溉土地的难题,阿基米德发明了圆筒状的螺旋扬水器,后人称它为“阿基米德螺旋”。 阿基米德螺旋是一个装在木制圆筒里的巨大螺旋状物(在一个圆柱体上螺旋状地绕上中空的管子),把它倾斜放置,下端浸入水中,随着圆柱体的旋转,水便沿螺旋管被提升上来,从上端流出。这样,就可以把水从一个水平面提升到另一个水平面,对田地进行灌溉。“阿基米德螺旋”扬水机至今仍在埃及等地使用。 工程套用:阿基米德螺旋泵 阿基米德螺旋泵的工作原理是当电动机带动泵轴转动时,螺杆一方面绕本身的轴线旋转,另一方面它又沿衬套内表面滚动,于是形成泵的密封腔室。螺杆每转一周,密封腔内的液体向前推进一个螺距,随着螺杆的连续转动,液体螺旋形方式从一个密封腔压向另一个密封腔,最后挤出泵体。螺杆泵是一种新型的输送液体的机械,具有结构简单、工作安全可靠、使用维修方便、出液连续均匀、压力稳定等优点。 生活套用:蚊香的几何特征 将一单盘蚊香光滑面朝上,放置一水平面上,自上俯视,会观察到的蚊香平面图。将这条曲线单独绘制出来,并加上一定的标志,得到了蚊香香条曲线图(如图6示)。点O为直线AB与曲线AB若干交点中位于最中间的一个交点。曲线OA实际上是单盘蚊香的香条外侧边线。观察不同厂牌蚊香的实物,会发现其对应的OA曲线上,接近点的一段(图中以OP表示),也就是所谓“太极头”部位的曲线,在形状上各有不同,但对于剩下的一大段曲线PA,则具有这样的特征:曲线PA E任取一点Q,假使点Q可在曲线PA上移动,则点Q越接近点A,点Q与点O的直线距离(以r表示)越大;而且,每移动一定角度(以0表示),增加的值与该角度成正比。用学语言描述曲线QA的上述特征,可表示为: △φ=k△θ,或 φ=k△θ+C-----(1) 式(1)中,k和C均为恒定常数,若以点O为极点,建立极坐标,则选择适当方位的极轴,可以将式(1)转移为: φ=kθ,θ∈[0,α]------(2) 式(2)中a为点A,即香条末端对应的极角。式(2)所描述的曲线一单擞蚊香香条外侧边线.实际上正是“阿基米德螺线”。 需要说明的是,式(2)所描述的只是蚊香“太极头”之外的香条曲线方程,由于不同厂牌蚊香的“太极头”没有统一固定的形状,所以无法对其作出确切的描述。同时,由于“太极头”一段香条的长度极短,因而其形状对蚊香香条长度的影响事实上也可以忽略不计。 相关发现 阿基米德(约公元前287~前212),古希腊伟大的数学家、力学家。他公元前287年生于希腊叙拉古附近的一个小村庄。 阿基米德 公元前267年,也就是阿基米德十一岁时,阿基米德被父亲送到埃及的亚历山大城跟随欧几里得的学生埃拉托塞和卡农学习。亚历山大城位于尼罗河口,是当时世界的知识、文化贸易中心,学者云集,人才荟萃,被世人誉为“智慧之都”。举凡文学、数学、天文学、医学的研究都很发达。 阿基米德在亚历山大跟随过许多著名的数学家学习,包括有名的几何学大师—欧几里德,阿基米德在这里学习和生活了许多年,他兼收并蓄了东方和古希腊的优秀文化遗产,对其后的科学生涯中作出了重大的影响,奠定了阿基米德日后从事科学研究的基础。 公元前240年,阿基米德由埃及回到故乡叙拉古,并担任了国王的顾问。从此开始了对科学的全面探索,在物理学、数学等领域取得了举世瞩目的成果,成为古希腊最伟大的科学家之一。后人对阿基米德给以极高的评价,常把他和牛顿、高斯并列为有史以来三个贡献最大的数学家。 据说,阿基米德螺线最初是由阿基米德的老师柯农(欧几里德的弟子)发现的。柯农死后,阿基米德继续研究,又发现许多重要性质,因而这种螺线就以阿基米德的名字命名了。 阿基米德螺线的画法 1.阿基米德螺线的几何画法 以适当长度(OA)为半径,画一圆O;作一射线OA;作一点P于射线OA上;模拟点A沿圆O移动,点P沿射线OA移动;画出点P的轨迹;隐藏圆O、射线OA&点P;即可得到螺线 2.阿基米德螺线的简单画法 有一种最简单的方法画出阿基米德螺线,用一根线缠在一个线轴上,在其游离端绑上一小环,把线轴按在一张纸上,并在小环内套一支铅笔,用铅笔拉紧线,并保持线在拉紧状态,然后在纸上画出由线轴松开的线的轨迹,就得到了阿基米德螺线。 自然界中螺线广泛存在的原因 自然界中,在千姿百态的生命体上发现了不少螺旋。如原生动物门中的砂盘虫;软体动物门中梯螺科中的尖高旋螺,凤螺科中的沟纹笛螺,明螺科中的明螺,又如塔螺科的爪哇拟塔螺、奇异宽肩螺、笋螺科的拟笋螺等大多数螺类,它们的外壳曲线都呈现出各种螺旋状;在植物中,则有紫藤、茑萝、牵牛花等缠绕的茎形成的曲线,菸草螺旋状排列的叶片,丝瓜、葫芦的触须,向日葵籽在盘中排列形成的曲线;甚至构成生命的主要物质——蛋白质、核酸及多糖等生物大分子也都存在螺旋结构,如人类遗传基因(DNA)中的双螺旋结构。其中,自然界中的砂盘虫化石,蛇盘绕起来形成的曲线等都可以构成阿基米德螺线。 螺线之所以在生命体中广泛存在,是由于螺线的若干优良性质所确定。而这些优良性质直接或间接地使生命体在生存斗争中获得最佳效果。由于在柱面内过柱面上两点的各种曲线中螺线长度最短,对于茑萝、紫藤、牵牛花等攀缘植物而言,如何用最少的材料、最低的能耗,使其茎或藤延伸到光照充足的地方是至关重要的。而在各种曲线中,螺线就起到省材、节约能量消耗的作用,在相同的空间中使其叶子获取较多的阳光,这对植物光合作用尤为重要,像菸草等植物轮状叶序就是利用形成的螺旋面能在狭小的空间中(其他植物的夹缝中)获得最大的光照面积,以利于光合作用。形成螺线状的某些物体还有一种物理性质,即像弹簧一样具有弹性(或伸缩性)。在植物中丝瓜、葫芦等茎上的拟圆柱螺线状的触须就是利用这个性质,能使其牢固地附着其他植物或物体上。即使有外力(如风等)的作用,由于螺线状触须的弹性(或伸缩性),使得纤细的触须不易被拉断,并且当外力消失后,其弹性(或伸缩性)又能保证茎叶能恢复到原来的位置。螺旋线对于生活在水中的大多数螺类软体动物也是十分有意义的。观察螺类在水中的运动方式,通常是背负著外壳前进,壳体直径较粗大的部分在前,螺尖在后。当水流方向与运动方向相反时,水流沿着壳体螺线由直径较大的部分旋转到直径较小的部分直到螺尖。水速将大大减小,这样位于壳体后水的静压力将大于壳体前端的静压力。在前后压力差的作用下,壳体将会自动向前运动。这样一来,来自水流的阻力经锥状螺线的转化变为前进的动力。除此而外,分布在螺类外壳上的螺线像一条肋筋,大大增加了壳体的强度,也分散了作用在壳体上的水压。 更多信息 阿基米德 螺线 ,亦称“等速螺线”。当一点P沿动射线OP一等速率运动的同时,这射线又以等角速度绕点O旋转,点P的轨迹称为“阿基米德螺线”。 它的极坐标方程为:r = aθ 这种螺线的每条臂的距离永远相等于 2πa。 笛卡尔坐标 方程式为: r=10*(1+t) x=r*cos(t * 360) y=r*sin(t * 360) z=0 一动点沿一直线作等速移动的同时,该直线又绕线上一点O作等角速度旋转时,动点所走的轨迹就是阿基米德涡线。直线旋转一周时,动点在直线上移动的距离称为导程用字母S表示。 阿基米德涡线在凸轮设计、车床卡盘设计、涡旋弹簧、螺纹、蜗杆设计中套用较多。阿基米德涡线画法如图: (1)先以导程S为半径画圆,再将圆周及半径分成相同的n等分,图中n=8; (2)以O为圆心,作各同心圆弧于相应数字的半径相交,得交点Ⅰ、Ⅱ、Ⅲ、…Ⅷ各点,即为阿基米德涡线上的点; (3)依次光滑连线各点,即得阿基米德涡线。 与希皮亚斯割圆曲线相类似,可以用来化圆为方。不过,后者也是阿基米德自己完成的。如图一,螺线P=aθ的极点为 O ,第一圈终于点 A 。以 O 为圆心, a 为半径作圆,则圆周长等于= OA 。这样,阿基米德轻易解决化圆为方问题。 稍迟于阿基米德的阿波罗尼斯用圆柱螺线解决了化圆为方问题,如图4-2-27所示。设圆 O 是一直圆柱之底面, A 是螺旋线之起始点。螺旋线在其上任一点 P 处的切线交底所在平面于 T 。则 PT 在底平面上的投影 BT 与 AB 相等。因此,当 P 点恰好为 A 点所在母线上离A最近的点时, TB 与圆周长相等。从而化圆为方问题得以解决。 图一 在阿波罗尼斯之后,机械师卡普斯(Carpus)也解过化圆为方问题。他所用的“双重运动曲线”今已失传,据数学史家唐内里(P. Tannery, 1843~1904)推测,它是摆线,亦即卡普斯是通过将圆沿直线滚动一周获得圆周长的(图二)。文艺复兴时期,义大利著名艺术大师达·文西(1452~1519)为化圆为方问题所吸引,并获巧妙方法。如图4-2-29,设圆半径为 R ,以圆为底作高为R/2的圆柱,然后将圆柱在平面上滚动一周,得矩形。将矩形化方,即完成化圆为方。 图二 以上我们看到,希腊人很早就意识到(但未能证明)三大难题不能以尺规在有限步骤内完成。但它们看似如此简单,以至希腊人未能抵制诱惑;他们不断寻求尺规以外的方法,结果导致圆锥曲线、割圆曲线、蚌线、蔓叶线和螺线等高次曲线和超越曲线的相继发现。三大难题使一代又一代希腊数学家显示了非凡的聪明才智,并深刻影响了希腊几何的整个发展过程。 三大难题的魅力并未随希腊文明的沦亡而消失。事实上,从希腊以后特别是欧洲文艺复兴时期以来直到本世纪,对于它们的研究从未停止过。 1837年,年轻的法国数学家万采尔(P. L. Wantzel,1814~1848)证明了三等分角和倍立方尺规作图之不可能性。1882年,德国数学家林德曼(C. Lindemann, 1852~1938)证明了π的超越性,从而证明了化圆为方的尺规作图之不可能性。以后数学家们又还建立了两条一般定理: 定理1 任何可用尺规由已知单位长度作出的量必为代数数; 定理 2 若一有理系数三次方程没有有理根,则它的根不可能用尺规由一给定单位长度作出。


什么是阿基米德螺线?

阿基米德螺线的平面笛卡尔坐标方程式为:阿基米德螺线(亦称等速螺线),得名于公元前三世纪希腊数学家阿基米德。阿基米德螺线是一个点匀速离开一个固定点的同时又以固定的角速度绕该固定点转动而产生的轨迹。所谓阿基米德螺线,是指一个动点匀速离开一个定点的同时又以固定的角速度绕该定点转动而产生的轨迹。其中,定点就是位置固定的点,不会移动。动点就是位置会发生移动的点。匀速,就是均匀的速度。角速度定义了一个物体绕圆心转动的速度,它的单位是弧度/秒。角速度,也就是一个物体单位时间内所走过的弧度。一圈是360度,在数学中我们记为2π,而弧度就等于是360/2π,约57度左右。如果角速度等于2π弧度/秒,说明它正好每秒绕圆心转一圈。扩展资料自然界中的螺线-动物界:生活在水中的大多数螺类软体动物在水中的运动方式,通常是背负着外壳前进,壳体直径较粗大的部分在前,螺尖在后。当水流方向与运动方向相反时,水流沿着壳体螺线由直径较大的部分旋转到直径较小的部分直到螺尖。水速将大大减小,这样位于壳体后水的静压力将大于壳体前端的静压力。在前后压力差的作用下,壳体将会自动向前运动。这样一来,来自水流的阻力经锥状螺线的转化变为前进的动力。甚至构成生命的主要物质——蛋白质、核酸及多糖等生物大分子也都存在螺旋结构,如人类遗传基因(DNA)中的双螺旋结构。参考资料来源:百度百科-阿基米德螺线

上一篇:寒食节是几月几日

下一篇:什么是打油诗