球冠的体积怎么算?
“球冠”(1/3)π(3R-h)*h^2 或者 π(h*h)(R-h/3),其中R为球半径,h为冠体所在高球冠是一个面,没有体积,球冠所围的部分叫做球缺球缺的体积计算公式是V=(π/3)*(3R-h)*h^2式中R是球的半径,h是球缺的高扩展资料:假定球冠最大开口部分圆的半径为 r ,对应球半径 R 有关系:r = Rcosθ,则有球冠积分表达:球冠面积微分元 dS = 2πr×Rdθ = 2πR2×cosθ dθ积分下限为θ,上限π/2所以:S = 2πR×R(1 - sinθ)其中:R(1 - sinθ)即为球冠的自身高度H所以:S = 2πRH
球冠面积计算
球冠面积的计算公式是:若球半径是R,球冠的高是h,球冠面积是S,则S=2πRh,若球冠的底的半径是r,则S=π(r^2+h^2)。假定球冠最大开口部分圆的半径为 r ,对应球半径 R 有关系:r = Rcosθ,则有球冠积分表达:球冠面积微分元 dS = 2πr*Rdθ = 2πR^2*cosθ dθ积分下限为θ,上限π/2所以:S = 2πR*R(1 - sinθ)其中:R(1 - sinθ)即为球冠的自身高度H所以:S = 2πRHS=∫dS =∫2πr*Rdθ=∫ (2πR)^2*cosθ dθ=(2πR)^2∫cosθ dθ= 2πR^2(1 - sinθ)球缺的体积公式:若球半径是R,球缺的高是h,球缺的底面半径是r,体积是V,则V=лh^2*(R-h/3)V=лh*(r^2/2+h^2/6)注意事项:1、2πR^2中^2为R的平方。2、∫ 要有写上下标,分别为π/2 ,θ。
球缺的体积公式是什么?
球缺的体积公式:V=(π/3)(3R-H)*H^2。一个球被平面截下的一部分叫做球缺。截面叫做球缺的底面,垂直于截面的直径被截后被截下的线段长叫做球缺的高。球是以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体,也叫做球体(solid sphere)。球的表面是一个曲面,这个曲面就叫做球面,球的中心叫做球心。球缺与球冠的区别球缺属于几何体,是指用一个平面去截一个球所得的部分,是“体”的概念。而球冠只是个“面”的概念,是指一个球面被一个平面所截得的部分。因此,球缺可以计算体积;而球冠只能计算面积。在英文中球缺是spherical cap,而球冠是curved surface of spherical cap。
球缺的体积公式是什么?
球缺的体积公式是:V=(π/3)(3R-H)*H^2。一个球被平面截下的一部分叫做球缺。截面叫做球缺的底面,垂直于截面的直径被截后被截下的线段长叫做球缺的高。球是以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体,也叫做球体(solid sphere)。球的表面是一个曲面,这个曲面就叫做球面,球的中心叫做球心。球缺与球冠的区别:球缺属于几何体,是指用一个平面去截一个球所得的部分,是“体”的概念。而球冠只是个“面”的概念,是指一个球面被一个平面所截得的部分。因此,球缺可以计算体积;而球冠只能计算面积。在英文中球缺是spherical cap, 而球冠是curved surface of spherical cap。
球缺面积公式
球缺面积公式是S=4π(r的平方)=π(D的平方)。球缺是一个球被平面截下的一部分,截面叫做球缺的底面,垂直于截面的直径被截后被截下的线段长叫做球缺的高。球缺曲面部分的面积(球冠面积)S=2πRH,球缺体积公式V=(π/3)(3R-H)*H^2(R是球的半径,H是球缺的高)。球缺属于几何体,是指用一个平面去截一个球所得的部分,是“体”的概念。而球冠只是个“面”的概念,是指一个球面被一个平面所截得的部分。因此,球缺可以计算体积;而球冠只能计算面积。学数学的好处:1、数学能让你思考任何问题的时候都比较缜密,而不至于思绪紊乱。还能使你的脑子反映灵活,对突发事件的处理手段也更理性。2、数学给予人们的不仅是知识,更重要的是能力,这种能力包括观察实验、收集信息、归纳类比、直觉判断、逻辑推理、建立模型和精确计算。这些能力和培养,将使人终身受益。3、经验是数学的基础,问题是数学的心脏,思考是数学的核心,发展是数学的目标,思想方法是数学的灵魂。数学思想方法是数学知识的精髓。