正数的补码是什么?
正数的补码就是原码本身,负数的补码是其反码加1。计算机中的有符号数有即原码、反码和补码。三种表示方法均有符号位和数值位两部分,符号位都是用0表示“正”,用1表示“负”。在计算机系统中,数值一律用补码来表示和存储。原因在于,使用补码,可以将符号位和数值域统一处理;同时,加法和减法也可以统一处理。补码:在反码的基础上加1,这样可以方便计算机进行计算,可以让“最高位符号位都能参与计算”。原码:字节的最高位为符号位,其余表示数值大小,最简单;反码:正数的反码和原码一样,负数的反码除最高位符号位外,其他位都取反。补码补码“模”概念的引入、负数补码的实质、以及补码和真值之间的关系所揭示的补码符号位所具有的数学特征,无不体现了补码在计算机中表示数值型数据的优势,解决了符号的表示的问题,克服了原码加减法运算繁杂的弊端,可有效简化运算器的设计。补码表示统一了符号位和数值位,使得符号位可以和数值位一起直接参与运算,这也为后面设计乘法器除法器等运算器件提供了极大的方便。补码概念的引入和当时运算器设计的背景不无关系,考虑到了数据存储和处理所需要的硬件代价。以上内容参考 百度百科——补码
为什么正数的补码是它本身
补码,其实,这就是一个“代替负数”的正数。使用了补码(正数)之后,在计算机中,就没有负数了。同时,在计算机中,也就没有减法运算了。所以,利用补码,就能够把加减法,统一为加法运算。使用补码的目的,就是:简化计算机的硬件。---------------------补码(一个正数),怎么就能代替负数呢?你看时针,倒拨 3 小时,可以用正拨 9 小时代替吧?你看三角函数,-π/2、+3π/2,正负两种角度,功能也是相同的吧?10 进制数,如果限定只用 2 位,那么会有: 25 - 1 = 24 25 + 99 = (一百) 24如果忽略进位一百(10^2),+99,就可以代替-1。 以上所说的这些正数,就是“负数的补数”。求补数的公式,是: 补数(即正数)= 负数 + 周期。而正数,不用变换,也不允许变换。必须直接参加运算。所以,正数,它就没有补数。也有人随口乱讲:正数,它本身就是补数。其实,正数,只是不许变换而已,并非是说它们就是。唉,这些人,基本概念不清啊!跟他们较真,也没有用的。---------------------计算机用二进制,那就称为补码了。8 位 2 进制,周期是:2^8 = 256。-1 的补码,是:-1 + 256 = 255 = 1111 1111(二进制)。-2 的补码,是:254 = 1111 1110。。。。-128 的补码是:128 = 1000 0000。由此,就可以导出补码的定义式: X >= 0, [ X ]补 = X; 零和正数不用变换。 X < 0, [ X ]补 = X + 2^n。 n 是补码的位数。这公式,是通用的。 书上,也有的,你去翻翻书吧。按照公式求补码,是极为简便的,而且还能理解补码的意义。---------------------那么,这些“原码反码取反加一符号位不变”是咋回事?因为:第一,老外的数学不好,弄出这些“隔路”的花样。第二,国内计算机专业老师的脑子不好,跟着老外混口饭吃。仅此而已。
整数的原码、反码、补码是什么意思??
整数的原码、反码、补码是十进制数在机器里面的二进制表示方式。
在计算机内,定点数有3种表示法:原码、反码和补码。
所谓原码就是前面所介绍的二进制定点表示法,即最高位为符号位,“0”表示正,“1”表示负,其余位表示数值的大小。
反码表示法规定:正数的反码与其原码相同;负数的反码是对其原码逐位取反,但符号位除外。
补码表示法规定:正数的补码与其原码相同;负数的补码是在其反码的末位加1。
1、原码、反码和补码的表示方法
(1) 原码:在数值前直接加一符号位的表示法。
例如: 符号位 数值位
[+7]原= 0 0000111 B
[-7]原= 1 0000111 B
注意:a. 数0的原码有两种形式:
[+0]原=00000000B [-0]原=10000000B
b. 8位二进制原码的表示范围:-127~+127
(2)反码:
正数:正数的反码与原码相同。
负数:负数的反码,符号位为“1”,数值部分按位取反。
例如: 符号位 数值位
[+7]反= 0 0000111 B
[-7]反= 1 1111000 B
注意:a. 数0的反码也有两种形式,即
[+0]反=00000000B
[- 0]反=11111111B
b. 8位二进制反码的表示范围:-127~+127
(3)补码的表示方法
1)模的概念:把一个计量单位称之为模或模数。例如,时钟是以12进制进行计数循环的,即以12为模。在时钟上,时针加上(正拨)12的整数位或减去(反拨)12的整数位,时针的位置不变。14点钟在舍去模12后,成为(下午)2点钟(14=14-12=2)。从0点出发逆时针拨10格即减去10小时,也可看成从0点出发顺时针拨2格(加上2小时),即2点(0-10=-10=-10+12=2)。因此,在模12的前提下,-10可映射为+2。由此可见,对于一个模数为12的循环系统来说,加2和减10的效果是一样的;因此,在以12为模的系统中,凡是减10的运算都可以用加2来代替,这就把减法问题转化成加法问题了(注:计算机的硬件结构中只有加法器,所以大部分的运算都必须最终转换为加法)。10和2对模12而言互为补数。
同理,计算机的运算部件与寄存器都有一定字长的限制(假设字长为8),因此它的运算也是一种模运算。当计数器计满8位也就是256个数后会产生溢出,又从头开始计数。产生溢出的量就是计数器的模,显然,8位二进制数,它的模数为28=256。在计算中,两个互补的数称为“补码”。
2)补码的表示:
正数:正数的补码和原码相同。
负数:负数的补码则是符号位为“1”,数值部分按位取反后再在末位(最低位)加1。也就是“反码+1”。
例如: 符号位 数值位
[+7]补= 0 0000111 B
[-7]补= 1 1111001 B
补码在微型机中是一种重要的编码形式,请注意:
a. 采用补码后,可以方便地将减法运算转化成加法运算,运算过程得到简化。正数的补码即是它所表示的数的真值,而负数的补码的数值部份却不是它所表示的数的真值。采用补码进行运算,所得结果仍为补码。
b. 与原码、反码不同,数值0的补码只有一个,即 [0]补=00000000B。
c. 若字长为8位,则补码所表示的范围为-128~+127;进行补码运算时,应注意所得结果不应超过补码所能表示数的范围。
2.原码、反码和补码之间的转换
由于正数的原码、补码、反码表示方法均相同,不需转换。
在此,仅以负数情况分析。
(1) 已知原码,求补码。
例:已知某数X的原码为10110100B,试求X的补码和反码。
解:由[X]原=10110100B知,X为负数。求其反码时,符号位不变,数值部分按位求反;求其补码时,再在其反码的末位加1。
1 0 1 1 0 1 0 0 原码
1 1 0 0 1 0 1 1 反码,符号位不变,数值位取反
1 +1
1 1 0 0 1 1 0 0 补码
故:[X]补=11001100B,[X]反=11001011B。
(2) 已知补码,求原码。
分析:按照求负数补码的逆过程,数值部分应是最低位减1,然后取反。但是对二进制数来说,先减1后取反和先取反后加1得到的结果是一样的,故仍可采用取反加1 有方法。
例:已知某数X的补码11101110B,试求其原码。
解:由[X]补=11101110B知,X为负数。求其原码表示时,符号位不变,数值部分按位求反,再在末位加1。
1 1 1 0 1 1 1 0 补码
1 0 0 1 0 0 0 1 符号位不变,数值位取反
1 +1
1 0 0 1 0 0 1 0 原码
1.3.2 有符号数运算时的溢出问题
请大家来做两个题目:
两正数相加怎么变成了负数???
1)(+72)+(+98)=?
0 1 0 0 1 0 0 0 B +72
+ 0 1 1 0 0 0 1 0 B +98
1 0 1 0 1 0 1 0 B -42
两负数相加怎么会得出正数???
2)(-83)+(-80)=?
1 0 1 0 1 1 0 1 B -83
+ 1 0 1 1 0 0 0 0 B -80
0 1 0 1 1 1 0 1 B +93
思考:这两个题目,按照正常的法则来运算,但结果显然不正确,这是怎么回事呢?
答案:这是因为发生了溢出。
如果计算机的字长为n位,n位二进制数的最高位为符号位,其余n-1位为数值位,采用补码表示法时,可表示的数X的范围是 -2n-1≤X≤2n-1-1
当n=8时,可表示的有符号数的范围为-128~+127。两个有符号数进行加法运算时,如果运算结果超出可表示的有符号数的范围时,就会发生溢出,使计算结果出错。很显然,溢出只能出现在两个同符号数相加或两个异符号数相减的情况下。
对于加法运算,如果次高位(数值部分最高位)形成进位加入最高位,而最高位(符号位)相加(包括次高位的进位)却没有进位输出时,或者反过来,次高位没有进位加入最高位,但最高位却有进位输出时,都将发生溢出。因为这两种情况是:两个正数相加,结果超出了范围,形式上变成了负数;两负数相加,结果超出了范围,形式上变成了正数。
而对于减法运算,当次高位不需从最高位借位,但最高位却需借位(正数减负数,差超出范围),或者反过来,次高位需从最高位借位,但最高位不需借位(负数减正数,差超出范围),也会出现溢出。
在计算机中,数据是以补码的形式存储的,所以补码在c语言的教学中有比较重要的地位,而讲解补码必须涉及到原码、反码。本部分演示作何一个整数的原码、反码、补码。过程与结果显示在列表框中,结果比较少,不必自动清除,而过程是相同的,没有必要清除。故需设清除各部分及清除全部的按钮。测试时注意最大、最小正负数。用户使用时注意讲解不会溢出:当有一个数的反码的全部位是1才会溢出,那么它的原码是10000...,它不是负数,故不会溢出。
在n位的机器数中,最高位为符号位,该位为零表示为正,为一表示为负;其余n-1位为数值位,各位的值可为零或一。当真值为正时,原码、反码、补码数值位完全相同;当真值为负时,原码的数值位保持原样,反码的数值位是原码数值位的各位取反,补码则是反码的最低位加一。注意符号位不变。
总结:提示信息不要太少,可“某某数的反码是某某”,而不是只显示数值。
1.原码的求法:(1)对于正数,转化为二进制数,在最前面添加一符号位(这是规定的),用1表示负数,二表示正数.如:0000 0000是一个字节,其中0为符号位,表示是正数,其它七位表示二进制的值.其实,机器不管这些,什么符号位还是值,机器统统看作是值来计算. 正数的原码、反码、补码是同一个数!
(2)对于负数,转化为二进制数,前面符号位为1.表示是负数.
计算原码只要在转化的二进制数前面加上相应的符号位就行了.
2.反码的求法:对于负数,将原码各位取反,符号位不变.
3.补码的求法:对于负数,将反码加上二进制的1即可,也就是反码在最后一位上加上1就是补码了.
什么是一个数的原码,反码,补码
原码,反码,补码针对的是定长二进制存储器表示的有符号整数。
正数的原码,反码,补码都相同。
负数的原码最高位为1,其他位为整数的绝对值(零有+0、-0之分)。
负数的反码最高位为1,其他位为整数的绝对值按位取反(零有+0、-0之分)。
负数的补码最高位为1,其他位为整数的绝对值按位取反再加一(零没有+0、-0之分,最常用)。
比如-1的原码为0x80000001,反码为0xFFFFFFFE,补码为0xFFFFFFFF。
//---------
在计算绝对值、取反、加一的过程中,无论提升成多少位去计算,最后装填时,都保留后几位(符号位以外相应位数)。
为啥整数的补码是其本身?//0001 的补码是多少?
其实,补码,它就是一个“代表负数”的正数。使用了补码之后,计算机中,就没有负数了。而且,也就没有减法运算了。那么,计算机中,只需配置一个加法器,就可以走遍天下了。---------------补码(一个正数)怎么就能代表负数呢?你看 10 进制: 28 - 1 = 27 28 + 99 = (一百) 27只要你限制在2 位数,超过 2 位就舍弃!那么,+99 和-1,就是等效的。同样,+98 就能代表-2。。。。这些正数,就叫做“负数的补数”。计算公式,你肯定能推出来: 补数 = 负数 + 10^2。正数,已经就是正数了,必须直接参加运算,不许变化。当然,也有人说,正数,其本身就是补码。-----------------------计算机中,以 8 位 2 进制,称为一个字节。那么有:-1 的补码,就是:-1 + 2^8 = 255 = 1111 1111 (二进制)。-2 的补码:-2 + 256 = 254 = 1111 1110。。。。-128 的补码:-128 + 256 = 1000 0000。-----------------------有了这些,不就完事了吗?原码反码取反加一符号位不变。。。还弄这些干嘛?老外,数学不好,只能绞尽脑汁,弄出这些个骚操作!从原码反码,开始学习补码,就弄不明白【补码的意义】。而且,还会在-0、-128 这里,走进死胡同,找不到出路。
怎样求补码代表的整数
补码的首位 1,既代表负号,又代表数值-2^(n-1)。各位之和,就是补码所代表的整数。例如,[X]补码 是: 1001 0111。 则:X =-128 + 16 + 4 + 2 + 1 = -105。 又如,[X]补码 是: 0001 0111。 则:X = 16 + 4 + 2 + 1 = +23。 ----------------------求补码所代表的数值,并不需要讨论: “正数负数原码反码补码取反加一符号位不变”!这些,都是专家用来唬人懵人骗人的戏法而已。
正数的原码、反码、补码是相同的吗?
相同。正数的原码=反码=补码。引进补码的作用是为了让计算机更方便做减法。例如:按时间12个小时来算,现在的准确时间是4点,有一个表显示的是7点,如果要校准时间,我们可以将时针退7-4=3格,也可以向前拨12-3=9格,计算机做减法就可以转化成-3=+9,这样可以简化计算机的硬件设备去做复杂的减法。原码求补码正整数的补码是其二进制表示,与原码相同。例:+9的补码是00001001。(备注:这个+9的补码是用8位2进制来表示的,补码表示方式很多,还有16位二进制补码表示形式,以及32位二进制补码表示形式,64位进制补码表示形式等。每一种补码表示形式都只能表示有限的数字。)求负整数的补码,将其原码除符号位外的所有位取反(0变1,1变0,符号位为1不变)后加1。同一个数字在不同的补码表示形式中是不同的。比如-15的补码,在8位二进制中是11110001,然而在16位二进制补码表示中,就是1111111111110001。以下都使用8位2进制来表示。以上内容参考:百度百科-补码
为什么正整数的原码,反码,补码相同..?
这是一种规定。补码是为负数想出度来的办法,目的是减法可以用加补码的方法实现,补码可用反码加1得来,于是又有了负数的知反码。计算机里有硬件“加法器”,有了补码,减法道也可以用加法器做了。计算机里运算速度,内硬件远快于软件,这就是反码,补码和原码花样的原因。扩展资料:原码、反码和补码是计算机中对数字二进制的三种表示方法。1、原码原码(true form)是一种计算机中对数字的二进制定点表示方法。2、反码反码是数值存储的一种,多应用于系统环境设置,如linux平台的目录和文件的默认权限的设置umask,就是使用反码原理。3、补码正数:正数的补码和原码相同。负数:负数的补码则是符号位为“1”。参考资料来源:百度百科-反码参考资料来源:百度百科-原码