数学黑洞

时间:2024-04-06 02:35:51编辑:揭秘君

数学黑洞是什么

对于数学黑洞,无论怎样设值,在规定的处理法则下,最终都将得到固定的一个值,再也跳不出去了,就像宇宙中的黑洞可以将任何物质,以及运行速度最快的光牢牢吸住,不使它们逃脱一样。这就对密码的设值破解开辟了一个新的思路。123数学黑洞123数学黑洞,即西西弗斯串。 西西弗斯串可以用几个函数表达它,我们称它为西西弗斯级数,表达式如下:F 是一级原函数,k级通项式为它的迭代循环它的vba程序代码详细底部目录数学黑洞设定一个任意数字串,数出这个数中的偶数个数,奇数个数,及这个数中所包含的所有位数的总数,例如:1234567890,偶:数出该数数字中的偶数个数,在本例中为2,4,6,8,0,总共有 5 个。奇:数出该数数字中的奇数个数,在本例中为1,3,5,7,9,总共有 5 个。总:数出该数数字的总个数,本例中为 10 个。新数:将答案按 “偶-奇-总” 的位序,排出得到新数为:5510。重复:将新数5510按以上算法重复运算,可得到新数:134。重复:将新数134按以上算法重复运算,可得到新数:123。结论:对数1234567890,按上述算法,最后必得出123的结果,我们可以用计算机写出程序,测试出对任意一个数经有限次重复后都会是123。换言之,任何数的最终结果都无法逃逸123黑洞。

数学黑洞有哪些 数学黑洞介绍

1、6174黑洞(即卡普雷卡卡尔常数)

取任意一个4位数(4个数字均为同一个数的除外),将该数的4个数字重新组合,形成可能的最大数和可能的最小数,再将两者之间的差求出来;对此差值重复同样过程,最后你总是至达卡普雷卡尔黑洞6174,至达这个黑洞最多需要7个步骤。结论:对任何只要不是4位数字全相同的4位数,按上述算法,不超过7次计算,最终结果都无法逃出6174黑洞。

2、123黑洞 (即西西弗斯串) :

设定一个任意数字串,数出这个数中的偶数个数,奇数个数,及这个数中所包含的所有位数的总数。结论:对数1234567890,按上述算法,最后必得出123的结果,换言之,任何数的最终结果都无法逃逸123黑洞。

3、七桥问题

七桥所成之图形中,没有一点含有偶数条数,因此上述的任务无法完成。欧拉运用图中的一笔画定理为判断准则,很快地就判断出要一次不重复走遍哥尼斯堡的7座桥是不可能的。也就是说,多少年来,人们费脑费力寻找的那种不重复的路线,根本就不存在。一个曾难住了那么多人的问题,竟是这么一个出人意料的答案!

4、对于数学黑洞,无论怎样设值,在规定的处理法则下,最终都将得到固定的一个值,再也跳不出去了,就像宇宙中的黑洞可以将任何物质,以及运行速度最快的光牢牢吸住,不使它们逃脱一样。这就对密码的设值破解开辟了一个新的思路。


数学黑洞是什么 什么是数学黑洞

1、一般限定从某些整数出发,反复迭代后结果必然落入一个点或若干点的情况叫数字黑洞。

2、四位数黑洞6174:把一个四位数的四个数字由小至大排列,组成一个新数,又由大至小排列排列组成一个新数,这两个数相减,之后重复这个步骤,只要四位数的四个数字不重复,数字最终便会变成6174。

3、例如3109,9310-0139=9171,9711-1179=8532,8532-2358=6174。而6174这个数也会变成6174,7641-1467=6174。

4、任取一个四位数,只要四个数字不全相同,按数字递减顺序排列,构成最大数作为被减数;按数字递增顺序排列,构成最小数作为减数,其差就会得6174;如不是6174,则按上述方法再作减法,至多不过10步就必然得到6174。


数字黑洞6174原理是什么?

四位数黑洞6174原理如下:把一个四位数的四个数字由小至大排列,组成一个新数,又由大至小排列排列组成一个新数,这两个数相减,之后重复这个步骤,只要四位数的四个数字不重复,数字最终便会变成 6174。例如 3109,9310 - 0139 = 9171,9711 - 1179 = 8532,8532 - 2358 = 6174。而 6174 这个数也会变成 6174,7641 - 1467 = 6174。任取一个四位数,只要四个数字不全相同,按数字递减顺序排列,构成最大数作为被减数,按数字递增顺序排列,构成最小数作为减数,其差就会得6174,如不是6174,则按上述方法再作减法,至多不过10步就必然得到6174。假如将三位数按照下面的规则运算下去,同样会出现数字“陷阱”。(1)若是3的倍数,便将该数除以3。(2)若不是3的倍数,便将各数位的数加起来再平方。如:126 结果进入“169-256”的死循环,再也跳不出去了。再如:368 ,结果,1进入了“黑洞”。另有一种方法,可以把任何一个多位数,迅速地推入“陷阱”。操作方法是:第一步:数出多位数含有偶数(包括0)的个数,并以它作新数的百位数。第二步:数出多位数含有奇数的个数,并以它作新数的十位数。第三步:将位数所含数字作新数的个位数,组成新数后,对新数重复上述过程。

数字黑洞6174原理是什么?

四位数黑洞6174:把一个四位数的四个数字由小至大排列,组成一个新数,又由大至小排列排列组成一个新数,这两个数相减,之后重复这个步骤,只要四位数的四个数字不重复,数字最终便会变成 6174。例如 3109,9310 - 0139 = 9171,9711 - 1179 = 8532,8532 - 2358 = 6174。而 6174 这个数也会变成 6174,7641 - 1467 = 6174。任取一个四位数,只要四个数字不全相同,按数字递减顺序排列,构成最大数作为被减数;按数字递增顺序排列,构成最小数作为减数,其差就会得6174;如不是6174,则按上述方法再作减法,至多不过10步就必然得到6174。扩展资料:假如将三位数按照下面的规则运算下去,同样会出现数字“陷阱”。(1)若是3的倍数,便将该数除以3。(2)若不是3的倍数,便将各数位的数加起来再平方。如:126 结果进入“169-256”的死循环,再也跳不出去了。再如:368 结果,1进入了“黑洞”。另有一种方法,可以把任何一个多位数,迅速地推入“陷阱”。操作方法是:第一步:数出多位数含有偶数(包括0)的个数,并以它作新数的百位数; 第二步:数出多位数含有奇数的个数,并以它作新数的十位数。第三步:将位数所含数字作新数的个位数,组成新数后,对新数重复上述过程。

数学黑洞6174再实际中有什么用

所谓数学黑洞,就是从给定的数字出发,在规定的运算法则下,最终都将得到固定的一个值,再也跳不出去了。就像宇宙中的黑洞可以将任何物质,包括光都牢牢吸住,无法逃脱一样。这样的数字称为“黑洞数”,这样的运算叫做“重排求差”操作。例如,三位数的黑洞数为495 简易推导过程:随便找个数,如297,三个位上的数从小到大和从大到小各排一次,为972和279,相减,得693 按上面做法再做一次,得到594,再做一次,得到495 之后反复都得到495再如,四位数的黑洞数有6174【摘要】
数学黑洞6174再实际中有什么用【提问】
所谓数学黑洞,就是从给定的数字出发,在规定的运算法则下,最终都将得到固定的一个值,再也跳不出去了。就像宇宙中的黑洞可以将任何物质,包括光都牢牢吸住,无法逃脱一样。这样的数字称为“黑洞数”,这样的运算叫做“重排求差”操作。例如,三位数的黑洞数为495 简易推导过程:随便找个数,如297,三个位上的数从小到大和从大到小各排一次,为972和279,相减,得693 按上面做法再做一次,得到594,再做一次,得到495 之后反复都得到495再如,四位数的黑洞数有6174【回答】
所谓数学黑洞,就是从给定的数字出发,在规定的运算法则下,最终都将得到固定的一个值,再也跳不出去了。就像宇宙中的黑洞可以将任何物质,包括光都牢牢吸住,无法逃脱一样。这样的数字称为“黑洞数”,这样的运算叫做“重排求差”操作。例如,三位数的黑洞数为495 简易推导过程:随便找个数,如297,三个位上的数从小到大和从大到小各排一次,为972和279,相减,得693 按上面做法再做一次,得到594,再做一次,得到495 之后反复都得到495再如,四位数的黑洞数有6174【回答】


数学黑洞举三个例又?

数学黑洞的例子
:数学黑洞的例子】
(即西西弗斯串)
数学中的123就跟英语中的abc一样平凡和简单。然而,你按以下运算顺序,就可以观察到这个最简单的黑洞值:
设定一个任意数字串,数出这个数中的偶数个数,奇数个数,及这个数中所包含的所有位数的总数,
例如:1234567890,
偶:数出该数数字中的偶数个数,在本例中为2,4,6,8,0,总共有5个。
奇:数出该数数字中的奇数个数,在本例中为1,3,5,7,9,总共有5个。
总:数出该数数字的总个数,本例中为10个。
新数:将答案按“偶-奇-总”的位序,排出得到新数为:5510。
重复:将新数5510按以上算法重复运算,可得到新数:134。
重复:将新数134按以上算法重复运算,可得到新数:123。
结论:对数1234567890,按上述算法,最后必得出123的结果,我们可以用计算机写出程序,测试出对任意一个数经有限次重复后都会是123。换言之,任何数的最终结果都无法逃逸123黑洞。
为什么有数学黑洞“西西弗斯串”呢?
(1)当是一个一位数时,如是奇数,则k=0,n=1,m=1,组成新数011,有k=1,n=2,m=3,得到新数123;
如是偶数,则k=1,n=0,m=1,组成新数101,又有k=1,n=2,m=3,得到123。
(2)当是一个两位数时,如是一奇一偶,则k=1,n=1如是两偶一奇。


都有哪几种数学黑洞

123黑洞 (即西西弗斯串) :

设定一个任意数字串,数出这个数中的偶数个数,奇数个数,及这个数中所包含的所有位数的总数,
例如:1234567890,
  偶:数出该数数字中的偶数个数,在本例中为2,4,6,8,0,总共有 5 个.
  奇:数出该数数字中的奇数个数,在本例中为1,3,5,7,9,总共有 5 个.
  总:数出该数数字的总个数,本例中为 10 个.
  新数:将答案按 “偶-奇-总” 的位序,排出得到新数为:5510.
  重复:将新数5510按以上算法重复运算,可得到新数:134.
  重复:将新数134按以上算法重复运算,可得到新数:123.
  结论:对数1234567890,按上述算法,最后必得出123的结果,换言之,任何数的最终结果都无法逃逸123黑洞.
“123数学黑洞(西西弗斯串)”现象已由中国回族学者秋屏先生于2010年5月18日作出严格的数学证明,并推广到六个类似的数学黑洞(“123”、“213”、“312”、“321”、“132”和“231”)


  6174黑洞(即卡普雷卡卡尔常数):

  取任意一个4位数(4个数字均为同一个数的除外),将该数的4个数字重新组合,形成可能的最大数和可能的最小数,再将两者之间的差求出来;对此差值重复同样过程,最后你总是至达卡普雷卡尔黑洞6174,至达这个黑洞最多需要7个步骤.
  例如:
  大数:取这4个数字能构成的最大数,本例为:4321;
  小数:取这4个数字能构成的最小数,本例为:1234;
  差:求出大数与小数之差,本例为:4321-1234=3087;
  重复:对新数3087按以上算法求得新数为:8730-0378=8352;
  重复:对新数8352按以上算法求得新数为:8532-2358=6174;
结论:对任何只要不是4位数字全相同的4位数,按上述算法,不超过7次计算,最终结果都无法逃出6174黑洞.


自恋性数字:

 除了0和1自然数中各位数字的立方之和与其本身相等的只有153、370、371和407(此四个数称为“水仙花数”).例如为使153成为黑洞,我们开始时取任意一个可被3整除的正整数.分别将其各位数字的立方求出,将这些立方相加组成一个新数然后重复这个程序.
  除了“水仙花数”外,同理还有四位的“玫瑰花数”(有:1634、8208、9474)、五位的“五角星数”(有54748、92727、93084),当数字个数大于五位时,这类数字就叫做“自幂数”.


上一篇:敖包会

下一篇:曹冲是谁杀的