二项分布
1、在n次独立重复的伯努利试验中,设每次试验中事件A发生的概率为p。用X表示n重伯努利试验中事件A发生的次数,则X的可能取值为0,1,…,n,且对每一个k(0≤k≤n),事件{X=k}即为“n次试验中事件A恰好发生k次”,随机变量X的离散概率分布即为二项分布。
2、在概率论和统计学中,二项分布是n个独立的成功/失败试验中成功的次数的离散概率分布,其中每次试验的成功概率为p。这样的单次成功/失败试验又称为伯努利试验。实际上,当n=1时,二项分布就是伯努利分布。
什么是二项分布?
二项分布就是重复n次独立的伯努利试验。在每次试验中只有两种可能的结果,而且两种结果发生与否互相对立,并且相互独立,与其它各次试验结果无关,事件发生与否的概率在每一次独立试验中都保持不变,则这一系列试验总称为n重伯努利实验,当试验次数为1时,二项分布服从0-1分布。
二项分布的平均数与标准差
如果二项分布满足p<q,np≥5,(或p>q,np≥5)时,二项分布接近正态分布。这时,也仅仅在这时,二项分布的x变量(即成功的次数)具有如下性质:
即x变量具有μ =np,的正态分布。
扩展资料:二项分布的应用:
二项分布在心理与教育研究中,主要用于解决含有机遇性质的问题。所谓机遇问题,即指在实验或调查中,实验结果可能是由猜测而造成的。比如,选择题目的回答,划对划错,可能完全由猜测造成。凡此类问题,欲区分由猜测而造成的结果与真实的结果之间的界限,就要应用二项分布来解决。
下面给出一个例子。
已知有正误题10题,问答题者答对几题才能认为他是真会,或者说答对几题,才能认为不是出于猜测因素?
分析:此题p=q=1/2,即猜对猜错的概率各为0.5。np≥5,故此二项分布接近正态分布:
根据正态分布概率,当Z=1.645时,该点以下包含了全体的95%。如果用原分数表示,则为
它的意义是,完全凭猜测,10题中猜对8题以下的可能性为95%,猜对8、9、10题的概率只5%。因此可以推论说,答对8题以上者不是凭猜测,而是会答。但应该明确:作此结论,也仍然有犯错误的可能,即那些完全靠猜测的人也有5%的可能性答对8、9、10道题。