理发师悖论跟什么理论是等价?罗素悖论主要是指假设性质P(x)表示"x不属于x",现假设它是由性质P确定了一个类A--也就是说"A={x|x?A}"。
那么这个问题就是A属于A是否能够成立?
首先,若A属于A,则A就是A的元素,那么A就会具有性质P,由性质P知A根本就不属于A。其次,若A根本就不属于A,也就是说A同时会具有性质P,然而A则是由所有的具有性质P的类所组成的,所以A当然会属于A。罗素悖论当中还会有一些更为通俗的一种描述,如理发师悖论、书目悖论。
罗素悖论和理发师悖论主要是指在某个城市当中就会有一位理发师,他的广告词是这样写的。
由于本人的理发技艺十分的高超,因此才会誉满全城。同时我将为本城所有的不给自己刮脸的人刮脸,我也只给这些人刮脸。因为我对各位表示热诚的欢迎!因此来找他刮脸的人经常是络绎不绝,因为自然都是那些不给自己刮脸的人。可是,有一天,当这位理发师从镜子里看见自己的胡子也一天天的长长了,他只是本能地抓起了这把剃刀,那么你们想想看他到底能不能给他自己刮脸呢?如果他不需要给自己刮脸,那么他也就属于不给自己刮脸的那类人了,因此他就要学会给自己刮脸,然而如果他给自己刮了脸呢?那么他也就又属于给自己刮脸的那类人,因此他根本就不该给自己刮脸。
罗素悖论与理发师悖论是等价的
如果把每个人都看成是一个主要的集合,那么这个集合的一些主要元素就会被定义成这个人刮脸的对象。那么,这个理发师就会宣称,他的元素,主要都是那些城里不属于自身的那些集合,并且城里所有不属于自身的集合都将会属于他。那么他是否会属于他自己?这样也就由理发师悖论从而得到了罗素悖论。反过来的变换也是相对成立的。